[LON-CAPA-users] Math Coding Question

Mark Lucas lon-capa-users@mail.lon-capa.org
Tue, 19 Aug 2008 08:35:50 -0400


Thanks for the reply! I'll absorb it and pass it along as well. Do you
have any suggestions for a maxima tutorial that is most applicable to
the capabilities for checking and evaluating that would be used in


On Tue, 2008-08-19 at 11:18 +0200, Peter Riegler wrote:
> Hi Mark,
> Mark Lucas wrote:
> > Hi,
> > 
> > I've got a couple of high school teachers who are diving into coding
> > math problems, and we're starting to look for advice.
> > 
> > The first question is this: what's the best way to force the students to
> > enter a fraction? For example, he wants 3/4 rather than 0.75.
> >    Two numericalresponse boxes with a / in between?
> >     String response?
> formularesponse (w/o) sampling or mathresponse
> Here a feature of computer algebra systems (CAS) comes quite handy: CAS 
> understand the concept of exact respresentation of numbers. E.g. 2/3 \!= 
> 0.6666. However, 3/4 = 0.75 is exact.
> If you really want to make sure that there is a / use mathresponse and 
> check for the occurence of / in the student's response.
> riegler/Mathematik/Bruchrechnen/additionVonBruechen.problem
> gives you an example that goes into that direction. There you can't 
> enter the given sum although it's mathematically equivalent to the 
> expression using the common denominator.
> > 
> > Second: Does anybody have coding guidelines they use for math problems?
> > Anybody want to write a 'white paper' on this and contribute it to the
> > community? 8)
> I see the need for such guidelines as well. At least for the 
> CAS-funtionality, after almost two years of experience, I feel that 
> authors first of all should get acquainted with maxima or any CAS to a 
> certain level. I have seen to many code fragments CAS is used and at the 
> same time perl is used for jobs which could have done more easily using 
> a CAS.
> >  * What's the experience with the different display modes: tth, jsmath,
> > mimetex - what are advantages and disadvantages? Should they be
> > hardcoded?
> Personally, I haven't set my mind on this issue. E.g. in my eyes 
> hardcoding jsmath is a must not. Not every user is privilegded to have 
> jsmath on their computer. On the the other hand I finally understood 
> that sometimes there a good reasons to hardcode mimetex, in particular 
> when tth renders a somewhat complex expression unreadable.
> > 
> >  * What are some issues with math problems that come up frequently?
> I guess the most severe issue is the frequent incapability of students 
> to enter syntactically correct expressions.
> Write a*(b+c in a written exam and the grader most likely will accept 
> it. A computer won't
> Hope this helps.
> Peter
> > 
> > Thanks in advance for any advice!
> > Mark
> >