[LON-CAPA-cvs] cvs: loncom /homework functionplotresponse.pm

www www at source.lon-capa.org
Thu Aug 16 17:02:29 EDT 2012


www		Thu Aug 16 21:02:29 2012 EDT

  Modified files:              
    /loncom/homework	functionplotresponse.pm 
  Log:
  Prepare for JavaScript/HTML5
  
  
-------------- next part --------------
Index: loncom/homework/functionplotresponse.pm
diff -u loncom/homework/functionplotresponse.pm:1.95 loncom/homework/functionplotresponse.pm:1.96
--- loncom/homework/functionplotresponse.pm:1.95	Wed Feb 29 01:46:52 2012
+++ loncom/homework/functionplotresponse.pm	Thu Aug 16 21:02:29 2012
@@ -1,7 +1,7 @@
 # LearningOnline Network with CAPA
 # Functionplot responses
 #
-# $Id: functionplotresponse.pm,v 1.95 2012/02/29 01:46:52 www Exp $
+# $Id: functionplotresponse.pm,v 1.96 2012/08/16 21:02:29 www Exp $
 #
 # Copyright Michigan State University Board of Trustees
 #
@@ -45,12 +45,45 @@
 }
 
 #
+# Use old Java or HTML5/Javascript for GeoGebra? Depends on browser!
+# Return a true value if HTML5 should be used.
+
+sub useHTML5 {
+    return 0;
+}
+
+# Routines to start the applet (Java) or the HTML5/JavaScript
+#
 # There can be a number of applets on a page, each called ggbApplet_$id, 
 # where $id is the "_"-concatenated part and responseid
 #
 
 sub geogebra_startcode {
     my ($id,$width,$height)=@_;
+    if (&useHTML5()) {
+        return &html5_geogebra_startcode(@_);
+    } else {
+        return &java_geogebra_startcode(@_).
+               &java_geogebra_code_param();
+    }
+}
+
+sub geogebra_endcode {
+    unless (&useHTML5()) {
+        return &java_geogebra_endcode();
+    }
+}
+
+sub geogebra_default_parameters {
+    my ($id)=@_;
+    unless (&useHTML5()) {
+        return &java_geogebra_default_parameters($id);
+    }
+}
+# === Java code
+
+sub java_geogebra_startcode {
+    my ($id,$width,$height)=@_;
     $width=int(1.*$width);
     $height=int(1.*$height);
     unless ($width) { $width=700; }
@@ -62,23 +95,38 @@
 ENDSTARTCODE
 }
 
-sub geogebra_endcode {
+sub java_geogebra_endcode {
     return &Apache::lonhtmlcommon::java_not_enabled()."</applet>\n";
 }
 
+sub java_geogebra_code_param {
+    return '<param name="ggbBase64" value="'.&geogebra_internal_program().'" />';
+}
+
+# === HTML5 code
+
+sub html5_geogebra_startcode {
+    my ($id,$width,$height)=@_;
+    my $code=&geogebra_internal_program();
+    return (<<ENDSTARTCODE);
+<article class="geogebraweb" data-param-enableLabelDrags="false" data-param-enableShiftDragZoom="false" 
+data-param-width="$width" data-param-height="$height" data-param-id="ggbApplet_$id" 
+data-param-ggbbase64="$code"></article>
+ENDSTARTCODE
+}
+
 #
 # This is the internal GeoGebra bytecode which defines the spline functions
 #
-sub geogebra_spline_program {
-    return (<<ENDSPLINEPROGRAM);
-<param name="ggbBase64" value="UEsDBBQACAAIAKNNfz4AAAAAAAAAAAAAAAASAAAAZ2VvZ2VicmFfbWFjcm8ueG1s7Vxtb+pGGv3c/grLH6pk21wSIITeDbcqfq3U217pVquVVrsrBxzCLtjIOAnTX78zYxtCxsDYi/EA50MyjjOM7XPs55iZ8zz3Py2mE+3Fj+bjMOjpNx+udc0PBuFwHIx6+nP8eNXVf/r07f3ID0f+Q+Rpj2E09eKe3mY9F/PxxyD8zZv685k38L8Onvyp92s48GI+2lMczz42Gq+vrx+yz38Io1FjNIo/LOZD+vnpJJj39HTjIx1u7UOvLd69eX190/j751+T4a/GwTz2goGva/S8pt4gCrXBdMhOoqd/nU3Ggd/UtTgMJzm7XH8yW+76x5ebH7Sv9OdLk7bNf+raeBAG9njis1OaP4WvvwR/0A/1vainx9Gzr2cH/CWYPcead93Tf9Y174Y2Hm2bPb1PmxZtPL2R9f39OV52fkl799PeL7wbPeicDj9goGnxOE6O7z3HT2HEtoZezPbQnv7En/pBrMVkRvfMwnEQ69rEe/An7Ew+ffvNPTtrLXz4jz+I03PO/v/oTeY+O9439/T/RjgJI40OT1kc8d8P/Lc3mT15dIuyy7tOPOJH2os3Yf9N99DhPodDf22vF4ynnHVtHvszNsANhXDm+0N6U+npCdPxZ3RAfmu9OZ1BGEbDubZIDquR9Ob6M7kdeRd+qV/Hf6YHbb3dG5PJ23O5b6Qo7cCrfwJ4NQ+IF73F/2/Amre3qkDWOcQtdhqQtfcN2WIW+XMmOBkO3sO/F1R3FrNk82JxqfW0i6b2F23xr4vWpXaltZLt5qX2vXZzyf64+Jlts/0XWafmm06LtJNH9/OeF1er8b5fjZd06wtjvf0nG6N/qWsNge/H54CHbX3tSgTSE1izPvwWqCqwMGVLwI+fxoP/BhRoehO94ZptuOPh0!
 GdyL0UNWVFDZKghMtQQOWrINmpIUWrIEVMzCKdTLxhqAX+rMZ6jF9/wotifj72AX9Z4+VLCn6H4MnnZ4KzxP+gbR5y8n7CLaKfHoJf65g2lnxw2PZgA6oAddrA87FIbSoopD26VQdspB+3ncRSF0TtI+Qsee3UTIfO+82bh/K/bgXuvpelndtyOVevDKsZfZbrY3FOQl8C0n2LaFzDtl8C0rxym15VC+jd6bTm3aQpC9q1EuFtftmP6koy6vFFfan6DEd9Csnfd1VCFw2o6bPKhOftNI9syqPEO9CtmFH9hjCTat/6UF+Kkv8ZJX+SkX4yTPjhJOOlv4KTx9gs1+5t/D980WdASJwta4mRB691kAW1btG3td9KAq7JBm1vaSM8hJJ820k9jTgFzCphTwJyC2pBhTgFzCphTqJsazClUNqewLYYbJ/Ca8P7Vv0rNM05D8zqVa97DYKl5bFNO88RgmKN5aVDcpXnGNs0z2BiGXGDlV3K8gTWXGrKiRlLzJKghctSQbdSQotSciebxZyjTPM6arObRb+NlNK9fUhkU0TzMo2Me/ejm0XMhNVJIDQFSowSkhnKQVnuXYmkCSxPnzcmmpQkJTow1TgyRE6MYJwY4STgx9rJc1BaXi9riclF7w3IRbdu0bVe6bKR5nZ5u0uaONqVXkZLRzHQ0rCrlv5NgVQmrSlhVUgUyrCphVQmrSnVTg1WlymbYsKqEVaV3kGFVCatKWFWqmxqsKtWieeYJaF7ngJpnnobmdSvXvMFwqXlsU07zxGCYo3lpUNyleeY2zTPZGKZcYOVXcryBNZcasqJGUvMkqCFy1JBt1JCi1JyJ5vFnKNM8zpqs5hlmKc0zSiqDIpoHJwWcFHBSwEmRC6mZQmoKkJolIDWVg7RdKaQwp8Ccct6cwJyiHiebzCkSnJhrnJgiJ2YxTkxwknBi7sUwdCsahm5Fw9DtDsMQbW9pe3tI45DmdXu6RZsfabM3H!
 1EyupWODl9R/hs6fEXwFcFXpApk8BXBVwRfUd3UwFdUFFr4iuArKgsZfEXwFcFXVDc18BX
VonnwFRXTPPiK4Cs6rsAKX5Gy1MBXVIvmWSeged0Dap51Gpp3c1256A39peixTTnRE6NhjuilUXGX6FnbRM9iY1hykZVfyfFG1lxqyIoaSdGToIbIUUO2UUOKUnMmosefoUz0OGuyomdapUTPLCkNiogezLQw01aAKcy0MNOeu5k2F1IrhdQSILVKQGopB2mnUkjhT4Y/+bw5gT9ZPU7gT1aPk03+ZAlOrDVOLJETqxgnFjhJOLH24hnviJ7xjugZ70h6xmnboW2nRu84HYOOZbOWDmZXZiZPjmdnx4O7PP8rK9zlcJfDXa4KZHCXw10Od3nd1MBdXhRauMvhLi8LGdzlcJfDXV43NXCX16J5cJcX0zy4y+EuP67ACne5stTAXV6L5sFdXkzz4C6Hu/zIIivc5cpSA3d5LaJnn4Do3Rxy0dg+EdXb+yqoEFr9x6XqsU051RPDYY7qpWFxl+rZ21TPZmPYcqGVX8nxhtZcasiKGknVk6CGyFFDtlFDilJzJqrHn6FM9Thrsqpn2aVUzyqpDYqoHnKqkFNVAabIqUJOFXKqkFN1CEjtFFJbgNQuAamtHKTdSiFFmlrpV1SkqZ0EJ0hTU48TpKmpxwnS1NTjZFOamgQn9hontsiJXYwTG5wknNh7SR28E1MH78TUwbuCqYO0vaPtnUophHSDjuawlg7nHC6nMD0DJzsDZBnmT+IgyxBZhsgyVAUyZBkiyxBZhnVTgyzDotAiyxBZhmUhQ5YhsgyRZVg3NcgyrEXzkGVYTPOQZYgsw+MKrMgyVJYaZBnWonnIMiymecgyRJbhkUVWZBkqSw2yDGsRPWQZFlQ9ZBkiy/DIQiuyDJWlBlmGtaiecwqqd0jrj3Miqle9keVxtFQ9timnemI4zFG9NCzuUj1nm+o5bAxHLrTyKzne0JpLDVlRI6l6EtQQOWrINmpIUWrORPX4M5SpHmdNVvVsp5Tq2SW1QRHVQ249cusrwBS5!
 9citR249cuuRW696bn0upE4KqSNA6pSA1FEO0ptq9Qn1Ckq/9qNewUlwgnoF6nGCegXqcYJ6BepxgnoF6nGyqV6BBCfOGieOyIlTjBMHnCScOBs4KVZDoivWkOiKNSS6JWtI0LZL267StSToBh3PZS0d0K2zuER6Tm52Tig3kT+viXITKDeBchOqQIZyEyg3gXITdVODchNFoUW5CZSbKAsZyk2g3ATKTdRNDcpN1KJ5KDdRTPNQbkJS81BuQpHAinITylKDchO1aB7KTRTTPJSbkBU9lJtQJLKi3ISy1KDcRC2ih3ITBVUP5SZkVQ/lJhQJrSg3oSw1KDdRi+qh3ERB1UO5CVnVQ7kJRUIryk0oSw3KTdSieu4pqN4hnSzuiahe9VaW0dNS9dimnOqJ4TBH9dKwuEv13G2q57IxXLnQyq/keENrLjVkRY2k6klQQ+SoIduoIUWpORPV489QpnqcNVnVc9xSqueU1AZFVA9FllBkqQJMUWQJRZZQZAlFllBkCUWWzq/IUi6mboqpK2DqlsDUVQ/TagUKhatKf5VC4aqT4ASFq9TjBIWr1OMEhavU4wSFq9TjBIWr1ONkU+EqCU7cNU5ckRO3GCcuOEk4cTdwsrGYWGPkhyP/IfI+/Q9QSwcIG2/gjX8KAABXRAEAUEsDBBQACAAIAKRNfz4AAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACACkTX8+AAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO0YXW/bNvA5/RUHPae2+CXJgZ2iLYZ1Q1YMdVcMe5MlRiYii5pE2XHRH78jKdly03YaNuxlA+Icj7wv3h3vSC1fPO5K2MumVbpaBWQWBiCrTOeqKlZBZ+6fJ8GL22fLQupCbpoU7nWzS80q!
 4JbysVU3lX6b7mRbp5lcZ1u5S+90lhonbWtMfTOfHw6H2cA/000xL4rN7LHNkX9XVu0q6A
c3KO6C6cAcOQ1DMv/1pzsv/rmqWpNWmQzA2tWp22dXy4Oqcn2Ag8rNdhUklAawlarYoqEiEQHMb6+WNW6ylplRe9ki5wgFla8Cs6sDK6pOK7t+5UdQnnYTQK72KpfNKghnnC44D1my6GEcgG6UrExPTKxOlDYfxC33Sh68XDtyKnkARutyk6LIKApgr1q1KeUquE/LFvenqvsGfXvCW3MspaPuJ87GkWvU2KqPSIzuCsA7BC29Dq956H7eopF6MtJomu4vKhzUJWE0TR39Wxtkgz4m2KU++hV9yci7BFMIPgEC6gED+OQGwuO8RyOPxj2a2H+Lbxju/TbFT0SMwiLCa/fnfk8D861c+Oc0LudDTi57R0G7tbR9Mhi5w8MZAluAWDiHgEA3CiALiNBDQIEI4IgncA0xMDvHgUECC5wgDDhHKOwq9x6NQBCIOETe7cA4CAaEIAXlADQESu2YAGVIIQQIZImtNGoFsAh4hBhLgKNVIdIw5MEh6qXACDDLR4XliCFKgEYQWZEEldrgCgpRCBGx0ngInAB3GmOgCTDLF/WxtynjAPWAecA9EB5EHsTQu1RVdWcu3Jjt8mFodH2KF1JjcTjXIF8sLkrU1bJMN7LESry20QbYp6U9CI7VFb6l7LJS5SqtPmAkLYeNPJzqoD2aQx3klATOxEzrJl8fWwwvPP4mG40yF3QWsZiEjBHOxQJP2NGv4OHCFRJhjWMxE7HAmtVmqU1MnszoQsQhETxMOLIj01eXnGa5X0tjcD8tpI+yHdxSNCofj39oX+kyP3mq1qoyr9PadI1rSmhcY7f0sipK6Tzjch6bQ/aw0Y9rn/vMy3p/rBELvf5N8VqXugE8NVRgVyh6uPHQ0VjDTlShowkdRS/DCj2tkwV1FA5uPHRUGDRvWr9RMuyShIMa1bqzjsLH2eIibntNVylzNyBGZQ/nnVr6t91ug8kysFlxrxvd2vNqG3OtW2Wz6CXOD4681Ev!
 +Tb3L+WeJ+jRxbSnywsENbe55ky9SmtAkPOd0HIdfzWlKhLWoz2PmsT4/hTP2OMb+PEH7dPw/Q/8bGdrWjUzzdiul+WJxHaVh77ERB/q/21WD+3qOWHyLjkykoxPp2EQ6PpFOTKSLJtLFE+mSiXSLqX6eHJCpESFTQ0KmxoRMDQqZGhUyNSxkalzI1MCQqZGhUyNDJ5+VqZGhUyNDp0aGfiEysrR3O10BbNdZo8vSVYf9aJw5AW7YuPdNX6zTo8Zrpatv349uSxZ/49lf2bfAefbDF2dfodBWNj/jm7Q8P7pwwRv+BvchLxjeoXw3Cad6Wpb6sMZLqkrL73Jl9PkJ4pbe40vivapPtRXk7x0O3iFQjcwvSv3Ic71lALm8T7vS9OpcZX5SiZcPssEd+MZfYb/udNf62/FIeo427hD1C33bS21L/gU7iJ/NZdHIofGU7guFb4pu9eJy8dn0cj4YsWyzRtX21oA9qiq6tMBmVHVliQ0XX2UPF5u2Bre4NZ8HRhnbuda17cbwFp9//ZcYdGZntta3P9qPK3CX4oI5BpCnBhkCq38syb0I+k8st38AUEsHCA04kj02BQAA1BEAAFBLAQIUABQACAAIAKNNfz4bb+CNfwoAAFdEAQASAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9tYWNyby54bWxQSwECFAAUAAgACACkTX8+RczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAC/CgAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAKRNfz4NOJI9NgUAANQRAAAMAAAAAAAAAAAAAAAAAB0LAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwC+AAAAjRAAAAAA"/>
-ENDSPLINEPROGRAM
+sub geogebra_internal_program {
+    return
+'UEsDBBQACAAIAKNNfz4AAAAAAAAAAAAAAAASAAAAZ2VvZ2VicmFfbWFjcm8ueG1s7Vxtb+pGGv3c/grLH6pk21wSIITeDbcqfq3U217pVquVVrsrBxzCLtjIOAnTX78zYxtCxsDYi/EA50MyjjOM7XPs55iZ8zz3Py2mE+3Fj+bjMOjpNx+udc0PBuFwHIx6+nP8eNXVf/r07f3ID0f+Q+Rpj2E09eKe3mY9F/PxxyD8zZv685k38L8Onvyp92s48GI+2lMczz42Gq+vrx+yz38Io1FjNIo/LOZD+vnpJJj39HTjIx1u7UOvLd69eX190/j751+T4a/GwTz2goGva/S8pt4gCrXBdMhOoqd/nU3Ggd/UtTgMJzm7XH8yW+76x5ebH7Sv9OdLk7bNf+raeBAG9njis1OaP4WvvwR/0A/1vainx9Gzr2cH/CWYPcead93Tf9Y174Y2Hm2bPb1PmxZtPL2R9f39OV52fkl799PeL7wbPeicDj9goGnxOE6O7z3HT2HEtoZezPbQnv7En/pBrMVkRvfMwnEQ69rEe/An7Ew+ffvNPTtrLXz4jz+I03PO/v/oTeY+O9439/T/RjgJI40OT1kc8d8P/Lc3mT15dIuyy7tOPOJH2os3Yf9N99DhPodDf22vF4ynnHVtHvszNsANhXDm+0N6U+npCdPxZ3RAfmu9OZ1BGEbDubZIDquR9Ob6M7kdeRd+qV/Hf6YHbb3dG5PJ23O5b6Qo7cCrfwJ4NQ+IF73F/2/Amre3qkDWOcQtdhqQtfcN2WIW+XMmOBkO3sO/F1R3FrNk82JxqfW0i6b2F23xr4vWpXaltZLt5qX2vXZzyf64+Jlts/0XWafmm06LtJNH9/OeF1er8b5fjZd06wtjvf0nG6N/qWsNge/H54CHbX3tSgTSE1izPvwWqCqwMGVLwI+fxoP/BhRoehO94ZptuOPh0GdyL0UNWVFDZKghMtQQOWrINmpIUWr!
 IEVMzCKdTLxhqAX+rMZ6jF9/wotifj72AX9Z4+VLCn6H4MnnZ4KzxP+gbR5y8n7CLaKfHoJf65g2lnxw2PZgA6oAddrA87FIbSoopD26VQdspB+3ncRSF0TtI+Qsee3UTIfO+82bh/K/bgXuvpelndtyOVevDKsZfZbrY3FOQl8C0n2LaFzDtl8C0rxym15VC+jd6bTm3aQpC9q1EuFtftmP6koy6vFFfan6DEd9Csnfd1VCFw2o6bPKhOftNI9syqPEO9CtmFH9hjCTat/6UF+Kkv8ZJX+SkX4yTPjhJOOlv4KTx9gs1+5t/D980WdASJwta4mRB691kAW1btG3td9KAq7JBm1vaSM8hJJ820k9jTgFzCphTwJyC2pBhTgFzCphTqJsazClUNqewLYYbJ/Ca8P7Vv0rNM05D8zqVa97DYKl5bFNO88RgmKN5aVDcpXnGNs0z2BiGXGDlV3K8gTWXGrKiRlLzJKghctSQbdSQotSciebxZyjTPM6arObRb+NlNK9fUhkU0TzMo2Me/ejm0XMhNVJIDQFSowSkhnKQVnuXYmkCSxPnzcmmpQkJTow1TgyRE6MYJwY4STgx9rJc1BaXi9riclF7w3IRbdu0bVe6bKR5nZ5u0uaONqVXkZLRzHQ0rCrlv5NgVQmrSlhVUgUyrCphVQmrSnVTg1WlymbYsKqEVaV3kGFVCatKWFWqmxqsKtWieeYJaF7ngJpnnobmdSvXvMFwqXlsU07zxGCYo3lpUNyleeY2zTPZGKZcYOVXcryBNZcasqJGUvMkqCFy1JBt1JCi1JyJ5vFnKNM8zpqs5hlmKc0zSiqDIpoHJwWcFHBSwEmRC6mZQmoKkJolIDWVg7RdKaQwp8Ccct6cwJyiHiebzCkSnJhrnJgiJ2YxTkxwknBi7sUwdCsahm5Fw9DtDsMQbW9pe3tI45DmdXu6RZsfabM3H1EyupWODl9R/hs6fEXwFcFXpApk8BX!
 BVwRfUd3UwFdUFFr4iuArKgsZfEXwFcFXVDc18BXVonnwFRXTPPiK4Cs6rsAKX5Gy1MBXV
IvmWSeged0Dap51Gpp3c1256A39peixTTnRE6NhjuilUXGX6FnbRM9iY1hykZVfyfFG1lxqyIoaSdGToIbIUUO2UUOKUnMmosefoUz0OGuyomdapUTPLCkNiogezLQw01aAKcy0MNOeu5k2F1IrhdQSILVKQGopB2mnUkjhT4Y/+bw5gT9ZPU7gT1aPk03+ZAlOrDVOLJETqxgnFjhJOLH24hnviJ7xjugZ70h6xmnboW2nRu84HYOOZbOWDmZXZiZPjmdnx4O7PP8rK9zlcJfDXa4KZHCXw10Od3nd1MBdXhRauMvhLi8LGdzlcJfDXV43NXCX16J5cJcX0zy4y+EuP67ACne5stTAXV6L5sFdXkzz4C6Hu/zIIivc5cpSA3d5LaJnn4Do3Rxy0dg+EdXb+yqoEFr9x6XqsU051RPDYY7qpWFxl+rZ21TPZmPYcqGVX8nxhtZcasiKGknVk6CGyFFDtlFDilJzJqrHn6FM9Thrsqpn2aVUzyqpDYqoHnKqkFNVAabIqUJOFXKqkFN1CEjtFFJbgNQuAamtHKTdSiFFmlrpV1SkqZ0EJ0hTU48TpKmpxwnS1NTjZFOamgQn9hontsiJXYwTG5wknNh7SR28E1MH78TUwbuCqYO0vaPtnUophHSDjuawlg7nHC6nMD0DJzsDZBnmT+IgyxBZhsgyVAUyZBkiyxBZhnVTgyzDotAiyxBZhmUhQ5YhsgyRZVg3NcgyrEXzkGVYTPOQZYgsw+MKrMgyVJYaZBnWonnIMiymecgyRJbhkUVWZBkqSw2yDGsRPWQZFlQ9ZBkiy/DIQiuyDJWlBlmGtaiecwqqd0jrj3Miqle9keVxtFQ9timnemI4zFG9NCzuUj1nm+o5bAxHLrTyKzne0JpLDVlRI6l6EtQQOWrINmpIUWrORPX4M5SpHmdNVvVsp5Tq2SW1QRHVQ249cusrwBS59citR249cuuRW696bn0upE4KqSNA6p!
 SA1FEO0ptq9Qn1Ckq/9qNewUlwgnoF6nGCegXqcYJ6BepxgnoF6nGyqV6BBCfOGieOyIlTjBMHnCScOBs4KVZDoivWkOiKNSS6JWtI0LZL267StSToBh3PZS0d0K2zuER6Tm52Tig3kT+viXITKDeBchOqQIZyEyg3gXITdVODchNFoUW5CZSbKAsZyk2g3ATKTdRNDcpN1KJ5KDdRTPNQbkJS81BuQpHAinITylKDchO1aB7KTRTTPJSbkBU9lJtQJLKi3ISy1KDcRC2ih3ITBVUP5SZkVQ/lJhQJrSg3oSw1KDdRi+qh3ERB1UO5CVnVQ7kJRUIryk0oSw3KTdSieu4pqN4hnSzuiahe9VaW0dNS9dimnOqJ4TBH9dKwuEv13G2q57IxXLnQyq/keENrLjVkRY2k6klQQ+SoIduoIUWpORPV489QpnqcNVnVc9xSqueU1AZFVA9FllBkqQJMUWQJRZZQZAlFllBkCUWWzq/IUi6mboqpK2DqlsDUVQ/TagUKhatKf5VC4aqT4ASFq9TjBIWr1OMEhavU4wSFq9TjBIWr1ONkU+EqCU7cNU5ckRO3GCcuOEk4cTdwsrGYWGPkhyP/IfI+/Q9QSwcIG2/gjX8KAABXRAEAUEsDBBQACAAIAKRNfz4AAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACACkTX8+AAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO0YXW/bNvA5/RUHPae2+CXJgZ2iLYZ1Q1YMdVcMe5MlRiYii5pE2XHRH78jKdly03YaNuxlA+Icj7wv3h3vSC1fPO5K2MumVbpaBWQWBiCrTOeqKlZBZ+6fJ8GL22fLQupCbpoU7nWzS80q4JbysVU3lX6b7mRbp5lcZ1u5S+90lh!
 onbWtMfTOfHw6H2cA/000xL4rN7LHNkX9XVu0q6Ac3KO6C6cAcOQ1DMv/1pzsv/rmqWpNW
mQzA2tWp22dXy4Oqcn2Ag8rNdhUklAawlarYoqEiEQHMb6+WNW6ylplRe9ki5wgFla8Cs6sDK6pOK7t+5UdQnnYTQK72KpfNKghnnC44D1my6GEcgG6UrExPTKxOlDYfxC33Sh68XDtyKnkARutyk6LIKApgr1q1KeUquE/LFvenqvsGfXvCW3MspaPuJ87GkWvU2KqPSIzuCsA7BC29Dq956H7eopF6MtJomu4vKhzUJWE0TR39Wxtkgz4m2KU++hV9yci7BFMIPgEC6gED+OQGwuO8RyOPxj2a2H+Lbxju/TbFT0SMwiLCa/fnfk8D861c+Oc0LudDTi57R0G7tbR9Mhi5w8MZAluAWDiHgEA3CiALiNBDQIEI4IgncA0xMDvHgUECC5wgDDhHKOwq9x6NQBCIOETe7cA4CAaEIAXlADQESu2YAGVIIQQIZImtNGoFsAh4hBhLgKNVIdIw5MEh6qXACDDLR4XliCFKgEYQWZEEldrgCgpRCBGx0ngInAB3GmOgCTDLF/WxtynjAPWAecA9EB5EHsTQu1RVdWcu3Jjt8mFodH2KF1JjcTjXIF8sLkrU1bJMN7LESry20QbYp6U9CI7VFb6l7LJS5SqtPmAkLYeNPJzqoD2aQx3klATOxEzrJl8fWwwvPP4mG40yF3QWsZiEjBHOxQJP2NGv4OHCFRJhjWMxE7HAmtVmqU1MnszoQsQhETxMOLIj01eXnGa5X0tjcD8tpI+yHdxSNCofj39oX+kyP3mq1qoyr9PadI1rSmhcY7f0sipK6Tzjch6bQ/aw0Y9rn/vMy3p/rBELvf5N8VqXugE8NVRgVyh6uPHQ0VjDTlShowkdRS/DCj2tkwV1FA5uPHRUGDRvWr9RMuyShIMa1bqzjsLH2eIibntNVylzNyBGZQ/nnVr6t91ug8kysFlxrxvd2vNqG3OtW2Wz6CXOD4681Ev+Tb3L+WeJ+jRxbSnywsENbe55ky9Sm!
 tAkPOd0HIdfzWlKhLWoz2PmsT4/hTP2OMb+PEH7dPw/Q/8bGdrWjUzzdiul+WJxHaVh77ERB/q/21WD+3qOWHyLjkykoxPp2EQ6PpFOTKSLJtLFE+mSiXSLqX6eHJCpESFTQ0KmxoRMDQqZGhUyNSxkalzI1MCQqZGhUyNDJ5+VqZGhUyNDp0aGfiEysrR3O10BbNdZo8vSVYf9aJw5AW7YuPdNX6zTo8Zrpatv349uSxZ/49lf2bfAefbDF2dfodBWNj/jm7Q8P7pwwRv+BvchLxjeoXw3Cad6Wpb6sMZLqkrL73Jl9PkJ4pbe40vivapPtRXk7x0O3iFQjcwvSv3Ic71lALm8T7vS9OpcZX5SiZcPssEd+MZfYb/udNf62/FIeo427hD1C33bS21L/gU7iJ/NZdHIofGU7guFb4pu9eJy8dn0cj4YsWyzRtX21oA9qiq6tMBmVHVliQ0XX2UPF5u2Bre4NZ8HRhnbuda17cbwFp9//ZcYdGZntta3P9qPK3CX4oI5BpCnBhkCq38syb0I+k8st38AUEsHCA04kj02BQAA1BEAAFBLAQIUABQACAAIAKNNfz4bb+CNfwoAAFdEAQASAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9tYWNyby54bWxQSwECFAAUAAgACACkTX8+RczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAC/CgAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAKRNfz4NOJI9NgUAANQRAAAMAAAAAAAAAAAAAAAAAB0LAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwC+AAAAjRAAAAAA';
 }
 
 #
 # The standard set of parameters inside <applet>
 #
-sub geogebra_default_parameters {
+sub java_geogebra_default_parameters {
    my ($id)=@_;
    return(<<ENDDEFAULTPARAMETERS);
         <param name="image" value="/adm/lonIcons/lonanim.gif"  />
@@ -120,6 +168,11 @@
       $script.="if (".join(' && ',map { "loaded_$_" } (@Apache::functionplotresponse::callscripts)).
                ") { setTimeout('ggbInitAll()',200) }";
       my $calls=join("\n",map { "ggbInit_$_();" } (@Apache::functionplotresponse::callscripts)); 
+      my $html5init='';
+      if (&useHTML5()) {
+          $html5init=
+           '<script type="text/javascript" language="javascript" src="/adm/geogebra/html5/web/test42/web/web.nocache.js"></script>';
+      }
       return (<<ENDGGBINIT);
 <script type="text/javascript">
 // <![CDATA[
@@ -2084,8 +2137,6 @@
      $result.=&geogebra_startcode($internalid,
                                   &Apache::lonxml::get_param('width',$parstack,$safeeval,-2),
                                   &Apache::lonxml::get_param('height',$parstack,$safeeval,-2));
-# load the spline bytecode
-     $result.=&geogebra_spline_program();
 # set default parameters
      $result.=&geogebra_default_parameters($internalid);
 # close the <applet>-tag


More information about the LON-CAPA-cvs mailing list