[LON-CAPA-cvs] cvs: loncom /homework functionplotresponse.pm

www www@source.lon-capa.org
Sat, 20 Nov 2010 00:14:44 -0000


This is a MIME encoded message

--www1290212084
Content-Type: text/plain

www		Sat Nov 20 00:14:44 2010 EDT

  Modified files:              
    /loncom/homework	functionplotresponse.pm 
  Log:
  New applet code and integral.
  
  
--www1290212084
Content-Type: text/plain
Content-Disposition: attachment; filename="www-20101120001444.txt"

Index: loncom/homework/functionplotresponse.pm
diff -u loncom/homework/functionplotresponse.pm:1.41 loncom/homework/functionplotresponse.pm:1.42
--- loncom/homework/functionplotresponse.pm:1.41	Fri Nov 19 20:03:13 2010
+++ loncom/homework/functionplotresponse.pm	Sat Nov 20 00:14:44 2010
@@ -1,7 +1,7 @@
 # LearningOnline Network with CAPA
 # option list style responses
 #
-# $Id: functionplotresponse.pm,v 1.41 2010/11/19 20:03:13 www Exp $
+# $Id: functionplotresponse.pm,v 1.42 2010/11/20 00:14:44 www Exp $
 #
 # Copyright Michigan State University Board of Trustees
 #
@@ -61,7 +61,7 @@
 #
 sub geogebra_spline_program {
     return (<<ENDSPLINEPROGRAM);
-<param name="ggbBase64" value="UEsDBBQACAAIADhQET0AAAAAAAAAAAAAAAASAAAAZ2VvZ2VicmFfbWFjcm8ueG1s7Z1bb+PGGYavk19BMDfexkvP+QCsEqzOuWi7gIveBG1By7RXrSwJsqyY+fWdGZLS2pQtzdqWSPoDApOSqCH5vSTnmdH7bj79en8zCVbJ4nY8m7ZCHKEwSKaj2eV4et0K75ZXH1X46y8/frpOZtfJxSIOrmaLm3jZCmlEQvP+TTxazILRzeXf4pukFZ7PJ+NpQsJgOZtNtrw1TCbz9Vu/f8Gn5/j0Czk9J/8Kg/FoNu2PJ+YrYXD7dfbHb9N/mG+040UrXC7ukvXefpvO75ZBjFrh5zCIsVnEZklaYdssqFnE4Vmx7d/vluuNV9nW7VW29ee228zs9NY0P1qa8w+W42W2//hu+XW2sGuX8dK+Y7ZMJslNMl0Gy3Ru3pnPxtNlGEzii2Rij+SXH3/4ZI86mF38Nxkt82MuPr+KJ7eJ3d8Pn8znndlktghM86bY1+7vhfsbT+ZfY7NmRHCbTuI0WQSreGI/zd8xzf11dpk8eDeejo0m9gRul8ncNoBNCedJcpkrmh2yWZmbJp2y3xzQaDZbXN4G962QRBwhKpEginGFJA2DtBWyiDPNJOVYEiwFEmHwZ9au+7orxPn4z/yQqKvqWV6sHWVrN6JsLMIIESqJ4EIiJiXP6yYoUoQIoYggFPHXq5u54l9cOML58UtHIkW4FJJQIqhQQrrK8UhizqRCmHPCNCeveMU1pXIsYlIrIYS57jBhiOWV4+ZdLZCWGEtMsGfl7ueL5NZ2BUU54ov/3Jse4X6erZ7cfwhawQmJUPCX4P7fJzRCH4KPAS1eE/v65wDbhXnj5LN9xd2nJ5vNyaPN7/ONY/OZ+8bJx4d7+PnhHrLN21vbfriJbbH9IQzOSpfF1d3UPfPDB2fqdDN90/kynSTB8ut49L+pK!
 YjRfCPMWekCygQqGnKX01s9s/Y4uJ2CphtBUz9BUx9BUz9B092Cpr6Cpo0TdDS7uYmnl8HUsVXnbrFKOvFimdyO46k72fGajtz9uvyQUY/T2r0w6LPMQMkeaxCzb54Ps29wKcOjs3yHpXKP7K5H612ve6b20yUXz5V8n4ewe/C+WdHFnkX/pzne2eJRsTcoWirk6vlCrrLm1gVcfec1e9BebNMPoYgSTrUQiGGppGbYdUQ4wuYtxJhW1IAk4xk1bna0z/m5vWRb3dq/5qpbX3BZAZbm9RfbqWVPtM/foVw7HxaUlWv7Kdeun3JSC6KphS2sDb1m3IoizbTVjCjFmcJcH0K69mPpzr4dmdnXbkD31JCTloectDzkpN8OOU+/0NNz+roDT/c47ZgFN4v9xqGdVfbtz+3s2+0OjEvL41IimZLIAK151FAN41IYl771uJSbxx8VWFCsGKUwLoVxKYxLYVwK41IYl8K4tB6jGxiXwrj09celz1FcpxHjBoO53CCvMIMGwoSF3WLcYCCOasSxZlRJX4Z7rm5NoV8REcwpNhUiihJRwK+gDJurVjCmEOHspfB7MVrDr131hd/tPPME/OZksy/8dnbDb8e22NmPldyZNo2VtgqabgT1hl8PQVM/QdPdgqa+gr5r+HX3awG/Tmsf+M3nBn3ht915n/DbycrcKSNUxw+hOrVDKGanWhQnhCshCOO0QCgpsNIKGzYWVBF1CITqvGxqn5Wn9ll5ap/9/uWn0/OfTqMoetMp/SAWrbBrFtIs/Gb4u6usMTfTz91t6VrrdGHGH2b8YcYfZvxrWTmY8YcZf5jxhxl/mPGvxKAHZvxhxr9+ysGM/5Fn/IkkBBFlBg7M3CpvPWxo0IQ/VgprpZDGHBeRKR4JZMeuTCGLxkrBjD/M+MOMf3MEhRn/asIvzPhXc8b/ORboNgKhpBHAkpJiBCsm1JvPvHabglAykgafBGdMmCuUSV3MH3Iip!
 ZaYMso5961cqccdXa4Ryq76ItT2XvEJhMr7x30Rqrsbobq2xe5+Pa4706b1uFsFTTeCeiO
Uh6Cpn6DpbkFTX0HfNUK5+7VAKKe1D0LlP6/6IlSn+z4RqpuVuVtGqK4fQnVrh1AP5w+pLAiKYM0lYhxLs8Uh+Kn7WDc/xwQvOyZ42THBj+OYCGLVCntmoc3i+wwUvVXWuDNSiNxIId0t61rv9lyzYKgAQwUYKsBQUbfKgaECDBVgqABDBRgqKjEgAkMFGCrqpxwYKsBQUUf4BUMFGCrAUAGGCjBUVAJ+wVABhorjgAAYKsBQAYaKQyIUGCpqLSgYKqqJUGCoqKCh4jkQ6DWCn3SEsZAGk5j5iwghxS/+UnClNULmD5av+Ptrryn8pCNmmFMwxZH9585w8T+lYYxR7C5lpIl+KT5dJmt8squ++LS9R3wCn/K+cV986u3Gp55tsbdfb+vOtGm97VZB042g3vjkIWjqJ2i6W9DUV9B3jU/ufi3wyWntg0+5O80Xn7q994lPvazMvTI+9fzwqVdzfOJM5PykhJSEmcG8wgjjg0xA9R4r5+dIFWVHqig7UkUlHKmmDdNW3y5NY/2XWVT7q2xvzqoqc6uqyq2q2t3V2f56fbcf8KyCZxU8q+BZrVvlwLMKnlXwrIJnFTyrlRg0gWcVPKv1Uw48q+BZrSP8gmcVPKvgWQXPKnhWKwG/4FkFz+pxQAA8q+BZBc/qIREKPKu1FhQ8q9VEKPCsgmf1CBQAnlXwrIJnFTyr4FkFz2qd8Qk8q5X0rD5HAv1GABRGkZTI1FpwTKnBpmICClGJBFGMKySp7y9Rz5WtKQCFcYSlFJgyJDjXhNM3Iajkak1QdtWXoLZ3ik8QVN497ktQ/d0E1bct9vfrcN2ZNq3D3SpouhHUm6A8BE39BE13C5r6CvquCcrdrwVBOa19CCr39/sSVK//Pgmqn5W5Xyaovh9B9WtHUKYDkoxLzgmhTFNW/IanzAdIKs0wUTw3ob8xQfUfK+eX+pHl1I8sp35kNVM/ZsW0NrBL09zgdWJAg1W2fxcHUnkc!
 SOdxIIyKPBB2N352BP2B2zMEgyAYBMEgCAbVrXIQDIJgEASDIBgEwaBKjKsgGATBoPopB8EgCAbVEX4hGATBIAgGQTAIgkGVgF8IBkEw6DggAMEgCAZBMOiQCAXBoFoLCsGgaiIUBIMgGHQECoBgEASDIBgEwSAIBkEwqM74BMEgCAYdBQMgGATBIAgGHZKgIBhUa0EhGFRNgoJgUCWDQc+hwKAZBEUiojRVhp8kR5SJN0eoQWMQikS2ZIJaq6U2/+ECobDEWprRACJ2EPBShrq6XjOUXfVlqO3d4hMMlXeQ+zLUYDdDDWyLg/26XHemTetytwqabgT1ZigPQVM/QdPdgqa+gr5rhnL3a8FQTmsfhsozkr4M1R+8T4YaZGUelBlq4MdQg/ox1AMfFGcFQpnhvbPoMia0OkgGYPBYOL9stSpnq1U5W61qkq02K6a9oV2aBoevG7YerrIDcqFrnYeuMSpS17hIXZMidU3doyE7psHQHQvEryF+DfFriF/XrXIQv4b4NcSvIX4N8etKjLwgfg3x6/opB/FriF/XEX4hfg3xa4hfQ/wa4teVgF+IX0P8+jggAPFriF9D/PqQCAXx61oLCvHraiIUxK8hfn0ECoD4NcSvIX4N8WuIX0P8us74BPFriF8fBQMgfg3xa4hfH5KgIH5da0Ehfl1NgoL4NcSvj8MBEL+G+DXErw/KUBC/rrWgEL+uJkNB/LqK8evnUGDYDISikdCaGVxShlaZRipHKJudZEgyrTizCd7XY6hhYxiKRXg98+T7Q2epY73+uiYlu+pLSts7vydIKe8G9yWl4W5SGtoWh/t1rO5Mm9axbhU03QjqTUoegqZ+gqa7BU19BW06KW3ttIdZpz0sd9pDv057WL9OmyIuiMYYcY40UWvnDZN2Qh5hxjkR7BC99vAFjOuetAXjurvUh3HzfwfEl3EHwwYy7pP/Us3ZdTK7Ti4W8S//B1BLBwhgj4YNdwsA!
 AFgqAQBQSwMEFAAIAAgAOFARPQAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWytVE2P2j
AQPXd/heV7gTgEgpSwareXrVB7YLuH3pxkCC5OHNkOH/vrO7YT2EXqrQdw/Gb8/ObL2eO5keQI2gjV5jSazCiBtlSVaOuc9nb3OaWP64esBlVDoTnZKd1wm9N4wqjDe7F++JSZvToRLr3Lq4BTTndcGqDEdBp4ZfYA9gPO+7OQguvLz+IPlNbcDIHkue16vMXqHrGyqTbCjNupv7CTwn4TR1GBJlKVOV0kKB2/XkFbUXKZ0/ksICyn7M6IUOyse6XFm2qtc7+R7xAhxIg3wIwwh2VTH2gGfSlFJXjrgvE60ImQk6jsPqfLhCEliHqPWpNoFthKpXS1vRgLDTn/Bq3w7iWbLJaLmMX4wz88dgkWlqSTZJGweTRny9UqWWIKUS8KYYtJzFJkZctZki5SluChf9v81XDcgrVYSkP4GcyYz1qL6ppwt3k2X5W8QZ0SrX3ine21b4N4gLb24m7DvGkX45e2ljBgEVZpD+WhUOdtyFscqF8unT/i9RT1k5JKE+0CRf31sBZh9T5O6NVr5n1m3mPgcKRXe7Ri3sOvRVi9lxRtkDYEHo1Rj1XhZ2GIA5Dcde+YG8kLwGagpG+F3YwbbJrDLVLn/6NvCpya921zpYz+E2U2veu37AC6BRm6qsXC9qo35Oi6N5TO66igFA1ug2FICHfF+oUCAlpBrWHUHUYupMtbP3TuHZxNRxFOg0GtpcW3A+OxLpZt51Kfugm3OF05/c4bMGTD8Y2xF0oqbtHLPR3T98f9iA1vzPovUEsHCEyILqxEAgAAlQQAAFBLAQIUABQACAAIADhQET1gj4YNdwsAAFgqAQASAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9tYWNyby54bWxQSwECFAAUAAgACAA4UBE9TIgurEQCAACVBAAADAAAAAAAAAAAAAAAAAC3CwAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAegAAADUOAAAAAA=="/>
+<param name="ggbBase64" value="UEsDBBQACAAIANOAcz0AAAAAAAAAAAAAAAASAAAAZ2VvZ2VicmFfbWFjcm8ueG1s7Vxtb6tGGv3c/grEh1Vuu4njlzje2/hW5b1Sb3ulu1qttGorYhPHrQ0WJomnv74zA9hxgGuGNfYYnw/JYDwM8ByYM545z7n7fjWfKc9euJwG/lBtX12riuePgvHUnwzVp+jhcqB+/+Hru4kXTLz70FUegnDuRkO1e9VVldVy+t4Pfnbn3nLhjrzPo0dv7v4UjNyIt/YYRYv3rdbLy8tVevxVEE5ak0l0tVqO6fHzmb8cqsnGe9rc1kEvXV69c33dbv33409x85dTfxm5/shTFXpdc3cUBspoPmYXMVQ/L2ZT3+uoShQEs5xdjjdbrHf971P7n8pn+vepQ8vOr6oyHQW+NZ157JKWj8HLj/6/6UGaGw7VKHzy1PSEP/qLp0hxr4fqD6ritmnh0rIzVDVadGnhqq207i9P0bryc1JbS2o/82r0pEva/IgFTYmmUXx+9yl6DEK2NXYjtofW9Gbe3PMjJSILumcRTP1IVWbuvTdjV/Lh66/u2FUrwf0f3ihKrjn9/sGdLT12vq/u6Pd6MAtChTZP8Z7w//f8vztbPLp0iz4HvOrMJV6oPLsz9m2yhzb3MRh7W3tdfzrnqCvLyFuwBto0hAvPGycPVXzJdGNBm+QP16sLGgVBOF4qq/jEChmqPVb+FR/Lq/Cb/Tz9Kzlt9/XeiMxeX81dK4nTjohpjYhY54ARo4/5/x2yzs2NPEHrH+Ixa0rQevsO2moRektGPGkk3PvfV5R/Vot482L1ThkqFxQs5Rtl9dtF9+r6nXKpdNPPHfb5W6XNCrrj4gf2Kf72YlO986b6Kqns0u/4EReX22f4dvsMcXUtt+3tKqxF7Z2qtDJPxMOTz7t3detOM49FHPa0Dn9I6up+GAPG4ESP09GfPgWCPmavn!
 gW24UzHY48NC0pBRzbQETHoiAh0RAw6shs6IgodOWHoRsF87vpjxeejI/0pfPZ0N4y85dT1+W1N14Mb/g5G7+JBC0eVf6Ajlyge53C2dnuvuoLg1WhHi0+dnDAT2BE79Wh96jXHVKRl3kXWFt5+tfB+nIZhEL4JKx8ssmFgNmTuP9xFsPzuy4F7y8nJMTseybpZZsMTlym7dvZEFCViqiUx1TIx1SrEVJMupte1hvQ/9N5yHtMkCOkvnMzT+vzlmD7Hra4f1Ocjj4OyI5l0zLxpSrhrTZqND1qy/7RnW3dqvAL9uRpGnxgiMT9uv+VCmGhbmGhZTDQxTDRgEmOiFWDSev3jnH3mv+mLJh662YmHbnbioftm4oGWXVp29zsBwXlZp8UNLUrPR8RH68nRmJ/A/ATmJzA/cRpBw/wE5icwP4H5CcxPfOnN+AIT6I0YcLz9IVEnd+pN4c5+7dx5P1pzJ9sU5c78TrKAO5Pusix36ru5U2ct6uU6YH6np9sB50JHNtAJc6cAdEQMOrIbOiIK3ZlwJ38HU+7kqIpwp6ZX4k6tIsNIwp2Y28fc/snN7eeGVE9CqmdCqlcIqS5dSOt9SrFcguWS88akaLmkBCb6FiZ6FhNdDBMdmMSY6HtZwupll7B62SWsXsESFi17tOzVupSluP2hatDilhaVV7bi1oykNax0FY1KsNKFlS6sdMkVNKx0YaULK11Y6cJKF1a6sNKFlS6sdGGlCytdWOk6CHcajeDO/gG502gKdw5q587ReM2dbFOUO/M7yQLuTLrLstxp7OZOg7VolOuA+Z2ebgecCx3ZQCfMnQLQETHoyG7oiCh0Z8Kd/B1MuZOjKsKdulGJO/WKDCMJd0IlApUIVCJQieSG1EhCamRCalQIqSFdSHu1hhTCGwhvzhsTCG/kw6RIeFMCE2MLEyOLiSGGiQFMYkyMvYihbrJiqJusGOpmhxiKlje0vDmkKEpxB0PVpMW/a!
 LE3jVTcupm0Ds1U0RgdmilopqCZkito0ExBMwXNFDRT0ExBMwXNFDRT0ExBMwXNFDRT0Ex
BMwXNFDRT0ExBMwXNlITcaTaCOwcH5E6zKdzZvq6dPMfemjzZpih55veSBeSZ9JdlydPcTZ4ma9Es1wPzOz3dHjgXOrKBTpg8BaAjYtCR3dARUejOhDz5O5iSJ0dVhDwNsxJ5GhUpRhLyhOAYguMaYgrBMQTH5y44zg2pmYTUzITUrBBSU7qQ9msNKTTch9RBQsMtHybQcMuHCTTc8mFSpOEugYm5hYmZxcQUw8QEJjEm5l509f2srr6f1dX3S+rqadmnZf+I+nraBm3LYiVtzKpNcB+fz0rPBwV+0Y9WKPChwIcCX66gQYEPBT4U+FDgQ4EPBT4U+FDgQ4EPBT4U+FDgQ4EPBT4U+FDgQ4EPBT4U+BJyJxT4otwJBT4U+FDgQ4EvC3RQ4B+NPK1GkGf7kAvrVmPYc+/rxJku2HtYsyfbFGXP/G6ygD2TDrMse1q72dNiLVrlumB+p6fbBedCRzbQCbOnAHREDDqyGzoiCt2ZsCd/B1P25KiKsKdpVWJPsyLHSMKeyF9D/loNMUX+GvLXkL+G/LVDhNRKQmplQmpVCKklXUgHtYYUKYGVh6lICWwEJkgJlA8TpATKhwlSAuXDpCglsAQm1hYmVhYTSwwTC5jEmFh7SdO8zaZp3mbTNG8F0zRpeUvLW5nSNekGbc1mJW3OPlz+ZnIFdnoFyOgsmsZBRicyOpHRKVfQkNGJjE5kdCKjExmdyOhERicyOpHRiYxOZHQioxMZncjoREYnMjqR0YmMTmR0SsidyOgU5U5kdCKjExmdyOiUBTpkdB6NPJHRiYxOZHQioxMZnScLHTI6j8aedjPY85AiK7sx7Fm/YOhhsmZPtinKnvndZAF7Jh1mWfa0d7OnzVq0y3XB/E5PtwvOhY5soBNmTwHoiBh0ZDd0RBS6M2FP/g6m7MlRFWFPy67EnlZFjpGEPeGHAD+EGmIKPwT4IcAPAX4I8EOQ3Q8hN6R2ElI7E1K7Qkht6ULa!
 rpef4DFReegPj4lGYAKPCfkwgceEfJjAY0I+TOAxIR8mRR4TJTCxtzCxs5jYYpjYwCTGxC7ARMz3Y5D1/RhkfT8GFX0/aDmg5UBq/w+6QdtzWEkbdI5pCJJck5NeEyxCimY2YRECixBYhMgVNFiEwCIEFiGwCIFFCCxCYBECixBYhMAiBBYhsAg5CHfCIkSUO2ERUpo7YRFyIh0wLEJOFjpYhByNO2ERIsqdsAiBRQgsQmARIgt0sAg5GnnCIkSYPWERAosQWITAIkQW6GARcjT2hEWIMHvCIgQWIbAIgUWILNDBIuRo7Ok0gz0PqRhyGsOe9UuGJo9r9mSbouyZ300WsGfSYZZlT2c3ezqsRadcF8zv9HS74FzoyAY6YfYUgI6IQUd2Q0dEoTsT9uTvYMqeHFUR9rSdSuxpV+QYSdgTBlsw2KohpjDYgsEWDLZgsAWDLRhsnZ/BVm5MnSSmTiamToWYOvLFtF6CgmlZ5Z9TMC1rBCYwLZMPE5iWyYcJTMvkwwSmZfJhAtMy+TApMi0rgYmzhYmTxcQRw8QBJjEmTgEmhUZyrYkXTLz70P3wN1BLBwgzo6j6TgoAAFNMAQBQSwMEFAAIAAgA04BzPQAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK7lAgBQSwcIRczeXRoAAAAYAAAAUEsDBBQACAAIANOAcz0AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1svVfbjts2EH1OvmKg540tUqQugb1BNiiaFtugqNug6JsscW0isiiIlL0u8vEdkpJXTtIFixYFbPF25j6ckVZvHg8NHEWvpWrXEVnEEYi2UrVsd+toMA+v8ujN7cvVTqid2PYlPKj+UJp1lCySCB61fN2qD+VB6K6sxKbai0N5r6rSOG57Y7rXy+XpdFpM9AvV75a73XbxqGukPzSt!
 Xkfj5DWyuyI6JQ5O45gsf//p3rN/JVttyrYSEVi9Bnn78sXqJNtaneAka7NfR1lGItgLud
ujojznESxvX6w6NLITlZFHoZFytgRZryNz6CLLqitbe/7Cz6C5WBNBLY+yFv06iheMZzlLC05jEidZivJUL0VrRiyxIpHZcuK2Okpx8mztzElkERilmm2JHNM0gqPUctuIdfRQNhrNk+1Dj669rLU5N8Khx40n3cgNStTyTwSjtyLw/kBFb+IbFru/12gmnswkmn74hwIncRnnYeLovzIwmeQlPLmWR/9GXj7zLsEMAnxQ+0jg82c7cnADG5epX2bjMreP4hmdvctCXET4LCI8vnE/9/86Js+lwX8ncbWc0nE1+gj03mLHPDDigNcyhqQAXjiHAEcPciAFpOghQEdyYLjO4QYySOwegwRyKHCDJMAYjtyeMu/RFDiBlEHq3Q4JA54AIYigDIDGQKmdE6AYIOAcOJJklhu1DJIUWIqrJAeGWsWISZAGpyiXQkIgsXSUW4oM0hxoCqllSVCoDS6nkMaQEsuNxcAIMCcxA5pDYunSMfZjtoz5YjPGDcwP3A+pHzIYXSrbbjBXbqwO9TQ1qrvEC9FYF56qj68T18Vp6eraSgxVI2tZth8xXBZnwwuXMmev3lTmGC0ip0elVF9vzhpjCI9/iF7hncnYImOc5yknhOQ2rc/+hBK+4FlR5GnOKccZ1iRdlTb7OFmkaZEUlOe04EWMss7TEVvwBHmlOYuLAk+9ZHHcCGOwcWgoH4WebN/1sp7Pf9B3qqkv7uiUbM27sjND73oOXu/emvS23TViY5PdJTbW/urTVj1ufIInntev5w5XsZe/3b1TjeoBrwa1rtmN49aPDmMVu6Bih4kdYuRhmV7OSUEdwo1bPzpUI1uv2mgomawk8SRGanehkfk8JZpyKxrbSoZWmvtpYWT16clSi/8wHLaYEROZZfeuV9peStuhO6WlTZW3uD858lou+T/lrpZfJOpKd70oa70XwnwzdeOnxB09NqNA/w+HdnLfJdmfw5FAHA3EJYE4Fojjgbg!
 0EJcF4vJAXBHq5+CAhEaEhIaEhMaEhAaFhEaFhIaFhMaFhAaGhEaGhkaGBt+V0MjQ0MjQ0MjQb0RGNLY9qhZgv6l61TSuOhxn88oxcNPevR2Oxbo8K+zMrr59P+tFdv3ek9/Z16mn3Y/f3L1Dplr0P+MbffP0yooHXvH3aIe4IvgF+btNuNTTplGnDfZ5WTbf1dKo/qp6z5wxCgOoxUM5NGbk4IrtV8V19Un0qJTv/i124EENGo5lc8W9RrEHXPqDsZOVtsv+hk3B79Zi14uplzTui833OXcaz98wvtheLSclrA4atfXRMtLY/oK2D2Zv7f3Rfi3CfYnfnOaM31SlsceWwZzOvQON34y3fwFQSwcI3KfwzsQEAAClDgAAUEsBAhQAFAAIAAgA04BzPTOjqPpOCgAAU0wBABIAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX21hY3JvLnhtbFBLAQIUABQACAAIANOAcz1FzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAI4KAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgA04BzPdyn8M7EBAAApQ4AAAwAAAAAAAAAAAAAAAAA7AoAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADAL4AAADqDwAAAAA=" />
 ENDSPLINEPROGRAM
 }
 
@@ -441,7 +441,7 @@
           $relationship='eq';
       }
       my $derivative=&Apache::lonxml::get_param('derivativeorder',$parstack,$safeeval);
-      unless (($derivative==0) || ($derivative==1) || ($derivative==2)) {
+      unless (($derivative==-1) || ($derivative==0) || ($derivative==1) || ($derivative==2)) {
          &Apache::lonxml::warning(&mt('Rule derivative not defined.'));
          $derivative=0;
       }
@@ -465,7 +465,8 @@
              &Apache::edit::select_arg(&mt('Function:'),'derivativeorder',
                                   [['0','Function itself'],
                                    ['1','First derivative'],
-                                   ['2','Second derivative']],$token).'<br />'.
+                                   ['2','Second derivative'],
+                                   ['-1','Integral']],$token).'<br />'.
              &Apache::edit::text_arg('(Initial) x-value:','xinitial',
                                       $token,'8').
              &Apache::edit::select_or_text_arg('(Initial) x-value label:','xinitiallabel',
@@ -628,8 +629,8 @@
 
 sub cubic_hermite {
    my ($t,$p1,$s1,$p2,$s2)=@_;
-   return (2.*$t*$t*$t-3.*$t*$t+1.)*$p1 + 5.*($t*$t*$t-2.*$t*$t+$t)*($s1-$p1)+
-          (-2.*$t*$t*$t+3.*$t*$t)  *$p2 + 5.*($t*$t*$t-$t*$t)      *($s2-$p2);
+   return (2.*$t*$t*$t-3.*$t*$t+1.)*$p1 + 3.*($t*$t*$t-2.*$t*$t+$t)*($s1-$p1)+
+          (-2.*$t*$t*$t+3.*$t*$t)  *$p2 + 3.*($t*$t*$t-$t*$t)      *($s2-$p2);
 }
 
 #
@@ -638,8 +639,8 @@
 
 sub ddt_cubic_hermite {
    my ($t,$p1,$s1,$p2,$s2)=@_;
-   return (6.*$t*$t-6.*$t) *$p1 + 5.*(3.*$t*$t-4.*$t+1.)*($s1-$p1)+
-          (-6.*$t*$t+6.*$t)*$p2 + 5.*(3.*$t*$t-2.*$t)   *($s2-$p2);
+   return (6.*$t*$t-6.*$t) *$p1 + 3.*(3.*$t*$t-4.*$t+1.)*($s1-$p1)+
+          (-6.*$t*$t+6.*$t)*$p2 + 3.*(3.*$t*$t-2.*$t)   *($s2-$p2);
 }
 
 #
@@ -648,8 +649,8 @@
 
 sub d2dt2_cubic_hermite {
    my ($t,$p1,$s1,$p2,$s2)=@_;
-   return (12.*$t-6.) *$p1 + 5.*(6.*$t-4.)*($s1-$p1)+
-          (-12.*$t+6.)*$p2 + 5.*(6.*$t-2.)*($s2-$p2);
+   return (12.*$t-6.) *$p1 + 3.*(6.*$t-4.)*($s1-$p1)+
+          (-12.*$t+6.)*$p2 + 3.*(6.*$t-2.)*($s2-$p2);
 }
 
 #
@@ -895,7 +896,7 @@
       =split(/\:/,$rule);
    $percent=($percent>0?$percent:5);
    &addlog("=================");
-   &addlog("Rule $label for ".('function itself','first derivative','second derivative')[$derivative]." $relationship $value");
+   &addlog("Rule $label for ".($derivative<0?'integral':('function itself','first derivative','second derivative')[$derivative])." $relationship $value");
    my $li=0;
    my $lh=400;
 
@@ -952,14 +953,37 @@
          $tol=4.*$tol/($xmax-$xmin);
       } elsif ($derivative==1) {
          $tol=2.*$tol/($xmax-$xmin);
+      } elsif ($derivative==-1) {
+         $tol=$tol*($xmax-$xmin)/2.;
       }
    }
-   for (my $i=$li; $i<=$lh; $i++) {
+   my $integral=0;
+   my $binwidth=($xmax-$xmin)/400.;
+   if (($derivative<0) && (!$findupper)) {
+# definite integral, calculate over whole length
+     &addlog("Calculating definite integral");
+     for (my $i=$li; $i<=$lh; $i++) {
+        $integral+=$Apache::functionplotresponse::func[$i]*$binwidth;
+     }
+     unless (&compare_rel($relationship,$value,$integral,$tol)) {
+        &addlog("Actual integral ".(defined($integral)?$integral:'undef').", expected $value, tolerance $tol");
+        &addlog("Rule $label failed.");
+        my $hintlabel=$label;
+        $hintlabel=~s/^R//;
+        push(@Apache::functionplotresponse::failedrules,$hintlabel);
+        &addlog("Set hint condition $hintlabel");
+        return 0;
+     } 
+   } else {
+     for (my $i=$li; $i<=$lh; $i++) {
         my $val;
         if ($derivative==2) {
            $val=$Apache::functionplotresponse::d2funcdx2[$i];
         } elsif ($derivative==1) {
            $val=$Apache::functionplotresponse::dfuncdx[$i];
+        } elsif ($derivative==-1) {
+           $integral+=$Apache::functionplotresponse::func[$i]*$binwidth;
+           $val=$integral;      
         } else {
            $val=$Apache::functionplotresponse::func[$i];
         }
@@ -993,6 +1017,7 @@
               return 0; 
            }
         }
+     }
    }
    &addlog("Rule $label passed.");
    return 1;

--www1290212084--