[LON-CAPA-cvs] cvs: loncom /html/adm/help/tex Math_Response_Problems.tex

albertel lon-capa-cvs-allow@mail.lon-capa.org
Tue, 22 May 2007 00:55:09 -0000


albertel		Mon May 21 20:55:09 2007 EDT

  Modified files:              
    /loncom/html/adm/help/tex	Math_Response_Problems.tex 
  Log:
  - add whitespace for clatrity
  
  
Index: loncom/html/adm/help/tex/Math_Response_Problems.tex
diff -u loncom/html/adm/help/tex/Math_Response_Problems.tex:1.1 loncom/html/adm/help/tex/Math_Response_Problems.tex:1.2
--- loncom/html/adm/help/tex/Math_Response_Problems.tex:1.1	Mon Jan 22 16:49:26 2007
+++ loncom/html/adm/help/tex/Math_Response_Problems.tex	Mon May 21 20:55:09 2007
@@ -11,47 +11,74 @@
 The following example illustrates this.
 \begin{verbatim}
 <problem>
-<script type="loncapa/perl">
+  <script type="loncapa/perl">
 $a1 = random(-6,6,4);
 $a2 = random(-6,6,4);
 $n1 = random(3,11,2);
 $n2 = random(2,10,2);
 $function = "$a1*cos($n1*x)+$a2*sin($n2*x)";
-$example=&xmlparse('An example would be <m eval="on">$(sin($n1\cdot x)+cos($n2\cdot x))/\sqrt{2}$</m>');</script>
+$example=&xmlparse('An example would be <m eval="on">$(sin($n1\cdot x)+cos($n2\cdot x))/\sqrt{2}$</m>');
+  </script>
+
 <startouttext />
-Give an example of a function
-<ol>
-<li>which is orthogonal to <algebra>$function</algebra> with respect to the
-scalar product
-<m>\[<g \mid h> =
-\frac{1}{\pi} \int_{-\pi}^{\pi}dx g(x) \cdot h(x)\]</m>
-</li>
-<li>whose norm is 1.</li>
-</ol><endouttext />
+  Give an example of a function
+  <ol>
+    <li>
+        which is orthogonal to <algebra>$function</algebra> with respect to the
+        scalar product
+        <m>
+           \[<g \mid h> =
+               \frac{1}{\pi} \int_{-\pi}^{\pi}dx g(x) \cdot h(x)\]
+        </m>
+    </li>
+    <li>
+        whose norm is 1.
+    </li>
+  </ol>
+<endouttext />
+
 <mathresponse answerdisplay="$example" cas="maxima" args="$function">
-<answer>overlap:integrate((RESPONSE[1])*(LONCAPALIST[1]),x,-%pi,%pi)/%pi;
+    <answer>
+overlap:integrate((RESPONSE[1])*(LONCAPALIST[1]),x,-%pi,%pi)/%pi;
 norm:integrate((RESPONSE[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
-is(overlap=0 and norm=1);</answer>
-<textline readonly="no" size="50" />
-<hintgroup showoncorrect="no">
-<mathhint name="ortho" args="$function" cas="maxima">
-<answer>overlap: integrate((LONCAPALIST[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
-is(not overlap = 0);</answer>
-</mathhint>
-<mathhint name="norm" args="$function" cas="maxima">
-<answer>norm: integrate((RESPONSE[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
-is(not norm = 1);</answer>
-</mathhint> <hintpart on="norm">
-<startouttext />
-The function you have provided does not have a norm of one.<endouttext />
-</hintpart>
-<hintpart on="ortho">
-<startouttext />
-The function you have provided is not orthogonal.<endouttext />
-</hintpart>
-</hintgroup>
+is(overlap=0 and norm=1);
+    </answer>
+    <textline readonly="no" size="50" />
+    <hintgroup showoncorrect="no">
+        <mathhint name="ortho" args="$function" cas="maxima">
+            <answer>
+overlap: integrate((LONCAPALIST[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
+is(not overlap = 0);
+            </answer>
+        </mathhint>
+        <mathhint name="norm" args="$function" cas="maxima">
+            <answer>
+norm: integrate((RESPONSE[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
+is(not norm = 1);
+            </answer>
+        </mathhint>
+        <hintpart on="norm">
+           <startouttext />
+The function you have provided does not have a norm of one.
+           <endouttext />
+        </hintpart>
+        <hintpart on="ortho">
+            <startouttext />
+The function you have provided is not orthogonal.
+            <endouttext />
+        </hintpart>
+    </hintgroup>
 </mathresponse>
-<postanswerdate><startouttext /><p>Note that with respect to the above norm, <m>$\cos(nx)$</m> is perpendicular to <m>$\sin(nx)$</m> and perpendicular to <m>$\cos(mx)$</m> for <m>$n\ne m$</m>.</p><endouttext />
+
+
+<postanswerdate>
+    <startouttext />
+        <p>
+Note that with respect to the above norm, <m>$\cos(nx)$</m> is perpendicular
+to <m>$\sin(nx)$</m> and perpendicular to <m>$\cos(mx)$</m> for
+<m>$n\ne m$</m>.
+        </p>
+    <endouttext />
 </postanswerdate>
 </problem>
 \end{verbatim}