[LON-CAPA-cvs] cvs: loncom /html/adm/help/tex Math_Response_Problems.tex
albertel
lon-capa-cvs-allow@mail.lon-capa.org
Tue, 22 May 2007 00:55:09 -0000
albertel Mon May 21 20:55:09 2007 EDT
Modified files:
/loncom/html/adm/help/tex Math_Response_Problems.tex
Log:
- add whitespace for clatrity
Index: loncom/html/adm/help/tex/Math_Response_Problems.tex
diff -u loncom/html/adm/help/tex/Math_Response_Problems.tex:1.1 loncom/html/adm/help/tex/Math_Response_Problems.tex:1.2
--- loncom/html/adm/help/tex/Math_Response_Problems.tex:1.1 Mon Jan 22 16:49:26 2007
+++ loncom/html/adm/help/tex/Math_Response_Problems.tex Mon May 21 20:55:09 2007
@@ -11,47 +11,74 @@
The following example illustrates this.
\begin{verbatim}
<problem>
-<script type="loncapa/perl">
+ <script type="loncapa/perl">
$a1 = random(-6,6,4);
$a2 = random(-6,6,4);
$n1 = random(3,11,2);
$n2 = random(2,10,2);
$function = "$a1*cos($n1*x)+$a2*sin($n2*x)";
-$example=&xmlparse('An example would be <m eval="on">$(sin($n1\cdot x)+cos($n2\cdot x))/\sqrt{2}$</m>');</script>
+$example=&xmlparse('An example would be <m eval="on">$(sin($n1\cdot x)+cos($n2\cdot x))/\sqrt{2}$</m>');
+ </script>
+
<startouttext />
-Give an example of a function
-<ol>
-<li>which is orthogonal to <algebra>$function</algebra> with respect to the
-scalar product
-<m>\[<g \mid h> =
-\frac{1}{\pi} \int_{-\pi}^{\pi}dx g(x) \cdot h(x)\]</m>
-</li>
-<li>whose norm is 1.</li>
-</ol><endouttext />
+ Give an example of a function
+ <ol>
+ <li>
+ which is orthogonal to <algebra>$function</algebra> with respect to the
+ scalar product
+ <m>
+ \[<g \mid h> =
+ \frac{1}{\pi} \int_{-\pi}^{\pi}dx g(x) \cdot h(x)\]
+ </m>
+ </li>
+ <li>
+ whose norm is 1.
+ </li>
+ </ol>
+<endouttext />
+
<mathresponse answerdisplay="$example" cas="maxima" args="$function">
-<answer>overlap:integrate((RESPONSE[1])*(LONCAPALIST[1]),x,-%pi,%pi)/%pi;
+ <answer>
+overlap:integrate((RESPONSE[1])*(LONCAPALIST[1]),x,-%pi,%pi)/%pi;
norm:integrate((RESPONSE[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
-is(overlap=0 and norm=1);</answer>
-<textline readonly="no" size="50" />
-<hintgroup showoncorrect="no">
-<mathhint name="ortho" args="$function" cas="maxima">
-<answer>overlap: integrate((LONCAPALIST[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
-is(not overlap = 0);</answer>
-</mathhint>
-<mathhint name="norm" args="$function" cas="maxima">
-<answer>norm: integrate((RESPONSE[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
-is(not norm = 1);</answer>
-</mathhint> <hintpart on="norm">
-<startouttext />
-The function you have provided does not have a norm of one.<endouttext />
-</hintpart>
-<hintpart on="ortho">
-<startouttext />
-The function you have provided is not orthogonal.<endouttext />
-</hintpart>
-</hintgroup>
+is(overlap=0 and norm=1);
+ </answer>
+ <textline readonly="no" size="50" />
+ <hintgroup showoncorrect="no">
+ <mathhint name="ortho" args="$function" cas="maxima">
+ <answer>
+overlap: integrate((LONCAPALIST[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
+is(not overlap = 0);
+ </answer>
+ </mathhint>
+ <mathhint name="norm" args="$function" cas="maxima">
+ <answer>
+norm: integrate((RESPONSE[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
+is(not norm = 1);
+ </answer>
+ </mathhint>
+ <hintpart on="norm">
+ <startouttext />
+The function you have provided does not have a norm of one.
+ <endouttext />
+ </hintpart>
+ <hintpart on="ortho">
+ <startouttext />
+The function you have provided is not orthogonal.
+ <endouttext />
+ </hintpart>
+ </hintgroup>
</mathresponse>
-<postanswerdate><startouttext /><p>Note that with respect to the above norm, <m>$\cos(nx)$</m> is perpendicular to <m>$\sin(nx)$</m> and perpendicular to <m>$\cos(mx)$</m> for <m>$n\ne m$</m>.</p><endouttext />
+
+
+<postanswerdate>
+ <startouttext />
+ <p>
+Note that with respect to the above norm, <m>$\cos(nx)$</m> is perpendicular
+to <m>$\sin(nx)$</m> and perpendicular to <m>$\cos(mx)$</m> for
+<m>$n\ne m$</m>.
+ </p>
+ <endouttext />
</postanswerdate>
</problem>
\end{verbatim}