[LON-CAPA-cvs] cvs: modules /matthew/DQC example_fm_output.xml

matthew lon-capa-cvs@mail.lon-capa.org
Tue, 25 May 2004 12:49:43 -0000


This is a MIME encoded message

--matthew1085489383
Content-Type: text/plain

matthew		Tue May 25 08:49:43 2004 EDT

  Added files:                 
    /modules/matthew/DQC	example_fm_output.xml 
  Log:
  Example Filemaker Pro xml output.
  
  
--matthew1085489383
Content-Type: text/plain
Content-Disposition: attachment; filename="matthew-20040525084943.txt"


Index: modules/matthew/DQC/example_fm_output.xml
+++ modules/matthew/DQC/example_fm_output.xml
<?xml version="1.0" encoding="UTF-8" ?><FMPXMLRESULT xmlns="http://www.filemaker.com/fmpxmlresult"><ERRORCODE>0</ERRORCODE><PRODUCT BUILD="02-10-2004" NAME="FileMaker Pro" VERSION="7.0v1"/><DATABASE DATEFORMAT="M/d/yyyy" LAYOUT="" NAME="DQC2004.fp7" RECORDS="26" TIMEFORMAT="h:mm:ss a"/><METADATA>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Question ID" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Answer" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Class" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Class 1" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Class 2" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Class 3" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Created Date" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Data File" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Developer" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Instructor 2" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Instructor 3" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Instructor1" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Level" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Model Elements" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Question" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Question type" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Result" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="System" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Test 1" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Test 2" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Test 3" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Test Date" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Test Date1" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Test Date2" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Test Date3" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Topic" TYPE="TEXT"/>    <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Type" TYPE="TEXT"/>    </METADATA>    <RESULTSET FOUND="26"><ROW MODID="10" RECORDID="1"><COL><DATA>BCC AA001</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>09/24/03</DATA></COL><COL><DATA></DATA></COL><COL><DATA>Andy Anderson</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Cellular Level Ecosystem</DATA></COL><COL><DATA>Matter Movement and/or Change</DATA></COL><COL><DATA>The air you breathe in is rich in oxygen (O2).  The air you breathe out has less oxygen and more carbon dioxide (CO2).      1) Where do you think that the carbon in the carbon dioxide came from? 2) How did it get into your breath?</DATA></COL><COL><DATA>Essay</DATA></COL><COL><DATA></DATA></COL><COL><DATA>Biological Carbon Cycle</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Cellular Respiration</DATA></COL><COL><DATA>Application</DATA></COL></ROW><ROW MODID="7" RECORDID="2"><COL><DATA>BCC AA002</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>BS 111</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>09/24/04</DATA></COL><COL><DATA></DATA></COL><COL><DATA>Andy Anderson</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merril</DATA></COL><COL><DATA>Cellular LevelOrganisms</DATA></COL><COL><DATA>Matter Movement and/or Change</DATA></COL><COL><DATA>Suppose you eat a grape with glucose in it.  One of the glucose molecules ends up providing energy to move your finger.  Trace the path of the glucose molecule through your body from your mouth until it is broken down and no longer a glucose molecule.</DATA></COL><COL><DATA>Multiple Choice</DATA></COL><COL><DATA></DATA></COL><COL><DATA>Biological Carbon Cycle</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>03/03/04</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Cellular Respirations: pools and matter fluxes 2</DATA></COL><COL><DATA>Application</DATA></COL></ROW><ROW MODID="2" RECORDID="3"><COL><DATA>BCC AA003</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>09/24/04</DATA></COL><COL><DATA></DATA></COL><COL><DATA>Andy Anderson</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Cellular Level</DATA></COL><COL><DATA></DATA></COL><COL><DATA>A human needs energy to live and grow. From the list below choose ALL the items that a human can use as a source of energy    Oxygen    Water    Meat    Sunlight    Rest    Vitamins    Potatoes    Caffeine    For the items that you chose, explain how a human gets and uses energy from them.</DATA></COL><COL><DATA>essay</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Cellular Respiration: Energy fluxes</DATA></COL><COL><DATA>Application</DATA></COL></ROW><ROW MODID="2" RECORDID="4"><COL><DATA>BCC AA004</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>09/24/04</DATA></COL><COL><DATA></DATA></COL><COL><DATA>Andy Anderson</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Cellular Level</DATA></COL><COL><DATA></DATA></COL><COL><DATA>When glucose is oxidized to convert energy for use in cellular metabolism, where would you find the following processes occurring. Choices for all below:    a. Cell cytoplasm outside of mitochondria only    b. Cell nucleus  and cytoplasm    c. Inside mitochondria only    d. Cell cytoplasm both inside and outside mitochondriaProcesses to locate:    Production of ATP    Production of CO2    Reduction (consumption?) of O2    Production of NADPH2</DATA></COL><COL><DATA>Multiple Choice</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Mechanisms: Setting</DATA></COL><COL><DATA>Definition</DATA></COL></ROW><ROW MODID="2" RECORDID="5"><COL><DATA>BCC AA005</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>09/24/04</DATA></COL><COL><DATA></DATA></COL><COL><DATA>Andy Anderson</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Cellular Level</DATA></COL><COL><DATA></DATA></COL><COL><DATA>Which of the following substances are BOTH consumed and regenerated during cellular respiration?  Choose all correct.    a. Pyruvate    b. NAD+    c. CO2    d. FADH</DATA></COL><COL><DATA>Multiple Choice</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Mechanisms: Catalysts</DATA></COL><COL><DATA>Application</DATA></COL></ROW><ROW MODID="5" RECORDID="6"><COL><DATA>BCC JM001</DATA></COL><COL><DATA>B</DATA></COL><COL><DATA></DATA></COL><COL><DATA>BS111(04)</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>09/24/04</DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA>Cellular Level</DATA></COL><COL><DATA></DATA></COL><COL><DATA>1)  The oxygen consumed during cellular respiration is directly involved in   A) glycolysis.   B) accepting electrons at the end of the electron transport chain.   C) the citric acid cycle.   D) the oxidation of pyruvate to acetyl CoA.   E) the phosphorylation of ADP. </DATA></COL><COL><DATA>Multiple Choice</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Cellular respiration: Oxygen</DATA></COL><COL><DATA>Definition</DATA></COL></ROW><ROW MODID="4" RECORDID="7"><COL><DATA>Cell JM002</DATA></COL><COL><DATA>B</DATA></COL><COL><DATA></DATA></COL><COL><DATA>BS111(04)</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>09/24/04</DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA>Cellular Level</DATA></COL><COL><DATA></DATA></COL><COL><DATA>All of the following statements about NAD+ are true except: A) NAD+ is reduced to NADH during both glycolysis and the Krebs cycle. B) NAD+ has more chemical energy than NADH. C) NAD+ is reduced by the action of dehydrogenases. D) NAD+ can receive electrons for use in oxidative phosphorylation. E) In the absence of NAD+, glycolysis cannot function. </DATA></COL><COL><DATA>Multiple Choice</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>NAD+</DATA></COL><COL><DATA>Definition</DATA></COL></ROW><ROW MODID="4" RECORDID="8"><COL><DATA>Cell JM003</DATA></COL><COL><DATA>D</DATA></COL><COL><DATA></DATA></COL><COL><DATA>BS111(04)</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>09/24/04</DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA>Cellular Level</DATA></COL><COL><DATA></DATA></COL><COL><DATA>All of the following substances are produced in a muscle cell under anaerobic conditions except A) ATP. B)  pyruvate. C)  lactate. D)  acetyl CoA. E)  NADH. </DATA></COL><COL><DATA>Multiple Choice</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Products of anaerobic conditions</DATA></COL><COL><DATA>Definition</DATA></COL></ROW><ROW MODID="4" RECORDID="9"><COL><DATA>Cell JM004</DATA></COL><COL><DATA>C</DATA></COL><COL><DATA></DATA></COL><COL><DATA>BS111(04)</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>09/24/04</DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA>Cellular Level</DATA></COL><COL><DATA></DATA></COL><COL><DATA>In addition to ATP, what are the end products of glycolysis? A) CO2 and H2O B) CO2 and ethyl alcohol C) NADH and pyruvate D) CO2 and NADH E) H2O and ethyl alcohol </DATA></COL><COL><DATA>Multiple Choice</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Products of Glycolysis</DATA></COL><COL><DATA>Definition</DATA></COL></ROW><ROW MODID="4" RECORDID="10"><COL><DATA>Cell JM005</DATA></COL><COL><DATA>E</DATA></COL><COL><DATA></DATA></COL><COL><DATA>BS111(04)</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>09/24/04</DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA>Cellular Level</DATA></COL><COL><DATA></DATA></COL><COL><DATA>Muscle cells in oxygen deprivation convert pyruvate to                         and in this step gain                          . A) lactate ... ATP B) alcohol ... CO2 C) alcohol ... ATP D) ATP ... NAD+ E) lactate ... NAD+ </DATA></COL><COL><DATA>Multiple Choice</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Anaerobic condition</DATA></COL><COL><DATA>Definition</DATA></COL></ROW><ROW MODID="4" RECORDID="11"><COL><DATA>Cell JM006</DATA></COL><COL><DATA>A</DATA></COL><COL><DATA></DATA></COL><COL><DATA>BS111(04)</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>09/24/04</DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA>Cellular Level</DATA></COL><COL><DATA></DATA></COL><COL><DATA>During aerobic cellular respiration, a proton gradient in mitochondria will be generated by                             and used primarily for                                  . A) the electron transport chain ... ATP synthesis B) the electron transport chain ... substrate-level phosphorylation C) glycolysis ... production of H2O D) fermentation ... NAD reduction E) diffusion of protons ... ATP synthesis </DATA></COL><COL><DATA>Multiple Choice</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Proton gradient</DATA></COL><COL><DATA>Definition</DATA></COL></ROW><ROW MODID="5" RECORDID="13"><COL><DATA>Cell JM007</DATA></COL><COL><DATA>B</DATA></COL><COL><DATA></DATA></COL><COL><DATA>BS111(04)</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>09/24/04</DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA>Cellular Level</DATA></COL><COL><DATA></DATA></COL><COL><DATA>The primary role of oxygen in respiration is to A) yield energy in the form of ATP as it is passed down the respiratory chain. B) act as an acceptor for electrons and hydrogen, forming water. C) combine with carbon, forming CO2. D) combine with lactic acid to form pyruvic acid. E) catalyze the glycolysis reaction. </DATA></COL><COL><DATA>Multiple Choice</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Role of oxygen</DATA></COL><COL><DATA>Definition</DATA></COL></ROW><ROW MODID="5" RECORDID="14"><COL><DATA>Cell JM008</DATA></COL><COL><DATA>C</DATA></COL><COL><DATA></DATA></COL><COL><DATA>BS111(04)</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>09/24/04</DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA>Cellular Level</DATA></COL><COL><DATA></DATA></COL><COL><DATA>Which of the following best describes chemiosmosis? A) the diffusion of water down an electrochemical gradient that drives ATP synthesis B) a proton gradient that drives redox reactions of electron transport C) a proton-motive force that activates ATP synthase to produce ATP D) an ATP synthase that pumps protons across the inner mitochondrial membrane using ATP as an energy source E) the uptake of NADH produced by glycolysis into mitochondria </DATA></COL><COL><DATA>Multiple Choice</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Chemiosmosis</DATA></COL><COL><DATA>Definition</DATA></COL></ROW><ROW MODID="5" RECORDID="15"><COL><DATA>Cell JM009</DATA></COL><COL><DATA>E</DATA></COL><COL><DATA></DATA></COL><COL><DATA>BS111(04)</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>09/24/04</DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA>Cellular Level</DATA></COL><COL><DATA></DATA></COL><COL><DATA>How many moles of ATP are produced from the complete oxidation of a mole of glucose in cellular respiration? A) 12 B)  15 C)  20 D)  30 E)  38 </DATA></COL><COL><DATA>Multiple Choice</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Amonts of ATP</DATA></COL><COL><DATA>Definition</DATA></COL></ROW><ROW MODID="5" RECORDID="16"><COL><DATA>Cell JM010</DATA></COL><COL><DATA>A</DATA></COL><COL><DATA></DATA></COL><COL><DATA>BS111(04)</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>09/24/04</DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA>Cellular Level</DATA></COL><COL><DATA></DATA></COL><COL><DATA>The ATP made during fermentation is generated by which of the following? A) substrate-level phosphorylation B) electron transport C) photophosphorylation D) chemiosmosis E) oxidation of NADH</DATA></COL><COL><DATA>Multiple Choice</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>ATP made during fermentation</DATA></COL><COL><DATA>Definition</DATA></COL></ROW><ROW MODID="6" RECORDID="17"><COL><DATA>Cell JM011</DATA></COL><COL><DATA>B</DATA></COL><COL><DATA></DATA></COL><COL><DATA>BS111(04)</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>09/24/04</DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA>Cellular Level</DATA></COL><COL><DATA></DATA></COL><COL><DATA>Suppose a yeast cell uses 10 moles of glucose for energy production. No oxygen is available. What will be the maximum net yield of ATP in moles? A) 10 B)  20 C)  60 D)  120 E)  380 </DATA></COL><COL><DATA>Multiple Choice</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Yield of ATP</DATA></COL><COL><DATA>Definition</DATA></COL></ROW><ROW MODID="9" RECORDID="18"><COL><DATA>Cell JM012</DATA></COL><COL><DATA>D</DATA></COL><COL><DATA></DATA></COL><COL><DATA>BS111(04)</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>09/24/04</DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA>Cellular Level</DATA></COL><COL><DATA></DATA></COL><COL><DATA>(NEED TO PASTE PICTURE)1)  Which of the chemical structures shown in the figure above illustrates a type of subunit typical of biological molecules that function as enzymes? A) a. B)  b. C)  c. D)  d. </DATA></COL><COL><DATA>Multiple Choice</DATA></COL><COL><DATA></DATA></COL><COL><DATA>Biological Carbon Cycle</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Structure of enzyme</DATA></COL><COL><DATA>Definition/Prototype</DATA></COL></ROW><ROW MODID="6" RECORDID="19"><COL><DATA>Cell JM013</DATA></COL><COL><DATA>D</DATA></COL><COL><DATA></DATA></COL><COL><DATA>BS111(04)</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>09/24/04</DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA>Cellular Level</DATA></COL><COL><DATA></DATA></COL><COL><DATA>The common essential function of enzymes in biochemical reactions is best described by which of the following? A) Change the direction of reversible reactions. B) Provide energy to drive energy-requiring reactions. C) Break carbon-carbon covalent bonds. D) Lower the need for activation energy. E) Create new hydrogen bonds. </DATA></COL><COL><DATA>Multiple Choice</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Function of enzyme</DATA></COL><COL><DATA>Definition</DATA></COL></ROW><ROW MODID="8" RECORDID="20"><COL><DATA>Cell JM014</DATA></COL><COL><DATA>B</DATA></COL><COL><DATA></DATA></COL><COL><DATA>BS111(04)</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>09/24/04</DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA>Cellular Level</DATA></COL><COL><DATA></DATA></COL><COL><DATA>4)  During exercise, an athlete&apos;s muscle cells may use up all their available oxygen. Which of the following respiratory processes would be most directly unable to continue due to the lack of additional oxygen? A) Glycolysis. B) The electron transport chain (oxydative phosphorylation). C) Calvin cycle. D) Krebs cycle. E) Pyruvate/Acetyl CoA conversion. </DATA></COL><COL><DATA>Multiple Choice</DATA></COL><COL><DATA></DATA></COL><COL><DATA>Biological Carbon Cycle</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Lack of oxygen</DATA></COL><COL><DATA>Definition/Prototype</DATA></COL></ROW><ROW MODID="12" RECORDID="21"><COL><DATA>BCC JM015</DATA></COL><COL><DATA>C</DATA></COL><COL><DATA></DATA></COL><COL><DATA>BS111(04)</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>09/24/04</DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA>Organisms</DATA></COL><COL><DATA>Matter Movement and/or Change</DATA></COL><COL><DATA>A mature maple tree can have a mass of 1 ton or more (dry biomass, after removing the water), yet it it starts from a seed that weighs less than 1 gram. Which of the following processes contributes the most to this huge increase in biomass? A) absorption of mineral substances from the soil via the roots B) absorption of organic substances from the soil via the roots C) incorporation of CO2 gas from the atmosphere into molecules by  green leaves D) incorporation of H2O from the soil into molecules by green leaves E) absorption of solar radiation into the leaf </DATA></COL><COL><DATA>Multiple Choice</DATA></COL><COL><DATA></DATA></COL><COL><DATA>Biological Carbon Cycle</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Tree mass gain</DATA></COL><COL><DATA>Definition</DATA></COL></ROW><ROW MODID="11" RECORDID="23"><COL><DATA>BCC JM016</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Cellular Level</DATA></COL><COL><DATA></DATA></COL><COL><DATA> Imagine that a highly unusual organism has just been discovered, and one research team is investigating its cell structure and function. They observe that the mitochondria from these cells are quite different from most other cells in that they do not perform the functions of the electron transport chain and oxidative phosphorylation. They discover that these functions take place in a new organelle which they have chosen to name the “ETC-osome”. To make this discovery, they isolated a large quantity of these organelles by homogenization and differential fractionation by centrifugation. They incubated the isolated organelles for a period of time and determined changes in the amount of various substances in the suspending solution. Since you know that these organelles are specialized for electron transport and oxidative phosphorylation, make some predictions about what you would expect them to find:</DATA></COL><COL><DATA>Short answer</DATA></COL><COL><DATA></DATA></COL><COL><DATA>Biological Carbon Cycle</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>inputs and outputs from pathways of cellular respiration (v1)</DATA></COL><COL><DATA>Application</DATA></COL></ROW><ROW MODID="2" RECORDID="24"><COL><DATA>BCC JM017</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>EcosystemOrganisms</DATA></COL><COL><DATA>Matter Movement and/or Change</DATA></COL><COL><DATA>In the figure above, closed arrows represent carbon substrates, while open arrows represent “energy management molecules”. Why is there no closed arrow between the last two boxes?</DATA></COL><COL><DATA>Essay</DATA></COL><COL><DATA></DATA></COL><COL><DATA>Biological Carbon Cycle</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Standard Representation</DATA></COL></ROW><ROW MODID="1" RECORDID="25"><COL><DATA>BCC JM018</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>John Merrill</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Cells</DATA></COL><COL><DATA>Carbon PoolsMatter Movement and/or Change</DATA></COL><COL><DATA>[fill-in the blank] In the following diagram, the major parts of cellular respiration are shown as boxes connected by arrows, and including categories of “inputs” and “outputs”. Provide labels for each box and each arrow on the diagram. [Note that some arrows may represent more than one substance as input or output.]</DATA></COL><COL><DATA>Essay</DATA></COL><COL><DATA></DATA></COL><COL><DATA>Biological Carbon Cycle</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Standard Representation</DATA></COL></ROW><ROW MODID="2" RECORDID="26"><COL><DATA>BCC MH001</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Merle Heidemann</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Organisms</DATA></COL><COL><DATA>Matter Movement and/or Change</DATA></COL><COL><DATA>The diagram shows the interrelationship of energy transformation and matter transformation in cellular metabolic processes.  Use is as a reference to answer the following questions:1) Jerrod, the Subway“ man, lost weight by eating a certain type of sandwich.  What happened to the fat (should we put in “an organic carbon compound”??) as he lost weight?</DATA></COL><COL><DATA>Essay</DATA></COL><COL><DATA></DATA></COL><COL><DATA>Biological Carbon Cycle</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Jerrod 1 (with diagram)</DATA></COL><COL><DATA>Standard Representation</DATA></COL></ROW><ROW MODID="2" RECORDID="27"><COL><DATA>BCC MH002</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Merle Heidemann</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Organisms</DATA></COL><COL><DATA>Matter Movement and/or Change</DATA></COL><COL><DATA>The diagram shows the interrelationship of energy transformation and matter transformation in cellular metabolic processes.  Use is as a reference to answer the following questions:2) What is the fate of oxygen at the cellular level that Jerrod breathes in?</DATA></COL><COL><DATA>Essay</DATA></COL><COL><DATA></DATA></COL><COL><DATA>Biological Carbon Cycle</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Jerrod 2 (with diagram)</DATA></COL><COL><DATA>Application</DATA></COL></ROW><ROW MODID="2" RECORDID="28"><COL><DATA>BCC MH003</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Merle Heidemann</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Organisms</DATA></COL><COL><DATA>Matter Movement and/or ChangeEnergy Transformation</DATA></COL><COL><DATA>The diagram shows the interrelationship of energy transformation and matter transformation in cellular metabolic processes.  Use is as a reference to answer the following questions:3) A potted geranium sits in a window sill, absorbing sunlight.  A) how does it obtain energy for its cells to maintain themselves?  B) how does is obtain energy to make new organic compounds?  Explain what it means to “make new organic compounds”.</DATA></COL><COL><DATA>Essay</DATA></COL><COL><DATA></DATA></COL><COL><DATA>Biological Carbon Cycle</DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA></DATA></COL><COL><DATA>Geranium (with diagram)</DATA></COL><COL><DATA>Application</DATA></COL></ROW></RESULTSET></FMPXMLRESULT>
--matthew1085489383--