[LON-CAPA-cvs] cvs: loncom /html/adm/help/tex CAPA_LON-CAPA_function_diffs.tex Problem_LON-CAPA_Functions.tex

bowersj2 lon-capa-cvs@mail.lon-capa.org
Tue, 10 Jun 2003 15:24:24 -0000


This is a MIME encoded message

--bowersj21055258664
Content-Type: text/plain

bowersj2		Tue Jun 10 11:24:24 2003 EDT

  Added files:                 
    /loncom/html/adm/help/tex	CAPA_LON-CAPA_function_diffs.tex 
                             	Problem_LON-CAPA_Functions.tex 
  Log:
  .tex tables for LON-CAPA functions available in problems
  
  
--bowersj21055258664
Content-Type: text/plain
Content-Disposition: attachment; filename="bowersj2-20030610112424.txt"


Index: loncom/html/adm/help/tex/CAPA_LON-CAPA_function_diffs.tex
+++ loncom/html/adm/help/tex/CAPA_LON-CAPA_function_diffs.tex
\label{CAPA_LON-CAPA_function_diffs}

\begin{longtable}{|p{5cm}|p{6.5cm}|p{5.5cm}|}
\hline 
\textbf{CAPA Functions }
 &\textbf{LON-CAPA }
 &\textbf{Differences (if any) }
 \endhead
 \hline 
sin(x), cos(x), tan(x)  & \&sin(\$x), \&cos(\$x), \&tan(\$x)  &   \\ 

 \hline 
asin(x), acos(x), atan(x), atan2(y,x)  & \&asin(\$x), \&acos(\$x), \&atan(\$x), \&atan2(\$y,\$x)  &   \\ 

 \hline 
log(x), log10(x)  & \&log(\$x), \&log10(\$x)  &   \\ 

 \hline 
exp(x), pow(x,y), sqrt(x)  & \&exp(\$x), \&pow(\$x,\$y), \&sqrt(\$x)  &   \\ 

 \hline 
abs(x), sgn(x)  & \&abs(\$x), \&sgn(\$x)  &   \\ 

 \hline 
erf(x), erfc(x)  & \&erf(\$x), \&erfc(\$x)  &   \\ 

 \hline 
ceil(x), floor(x)  & \&ceil(\$x), \&floor(\$x)  &   \\ 

 \hline 
min(...), max(...)  & \&min(...), \&max(...)  &   \\ 

 \hline 
factorial(n)  & \&factorial(\$n)  &   \\ 

 \hline 
N\%M  & \$N\%\$M  &   \\ 

 \hline 
sinh(x), cosh(x), tanh(x)  & \&sinh(\$x), \&cosh(\$x), \&tanh(\$x)  &   \\ 

 \hline 
asinh(x), acosh(x), atanh(x)  & \&asinh(\$x), \&acosh(\$x), \&atanh(\$x)  &   \\ 

 \hline 
/DIS(\$x,''nn'')  & \&format(\$x,''nn'')  &  The difference is obvious. \\ 

 \hline 
Not in CAPA  & \&prettyprint(\$x,''nn'')  &   \\ 

 \hline 
Not in CAPA  & \&dollarformat(\$x  &   \\ 

 \hline 
roundto(x,n)  & \&roundto(\$x,\$n)  &   \\ 

 \hline 
web(``a'',''b'',''c'') or web(a,b,c)  & \&web(``a'',''b'',''c'') or \&web(\$a,\$b,\$c)  &   \\ 

 \hline 
html(``a'') or html(a)  & \&html(``a'') or \&html(\$a)  &   \\ 

 \hline 
jn(m,x)  & \&j0(\$x), \&j1(\$x), \&jn(\$m,\$x), \&jv(\$y,\$x)  & In CAPA, j0, j1 and jn are contained in one function, jn(m,x) where m takes the value of 0, 1 or 2. jv(y,x) is new to LON-CAPA. \\ 

 \hline 
yn(m,x)  & \&y0(\$x), \&y1(\$x), \&yn(\$m,\$x), \&yv(\$y,\$x)  & In CAPA, y0, y1 and yn are contained in one function, yn(m,x) where m takes the value of 0, 1 or 2. yv(y,x) is new to LON-CAPA. \\ 

 \hline 
random(l,u,d)  & \&random(\$l,\$u,\$d)  & In CAPA, all the 3 arguments must be of the same type. However, now you can mix the type \\ 

 \hline 
choose(i,...)  & \&choose(\$i,...)  &   \\ 

 \hline 
/MAP(seed;w,x,y,z;a,b,c,d)  & \parbox{6.49cm}{
Option 1 - \&map(\$seed,[$\backslash$\$w,$\backslash$\$x,$\backslash$\$y,$\backslash$\$z],[\$a,\$b,\$c,\$d]) or !!
 Option 2 - \&map(\$seed,$\backslash$@mappedArray,[\$a,\$b,\$c,\$d]) !!
 Option 3 - @mappedArray = \&map(\$seed,[\$a,\$b,\$c,\$d]) !!
 Option 4 - (\$w,\$x,\$y,\$z) = \&map(\$seed,$\backslash$@a) !!
 where \$a='A'!!
 \$b='B'!!
 \$c='B'!! 
 \$d='B'!! 
 \$w, \$x, \$y, and \$z are variables } & In CAPA, the arguments are divided into three groups separated by a semicolon ;. In LON-CAPA, the separation is done by using [] brackets or using an array @a. Note the backslash ($\backslash$) before the arguments in the second and third groups. \\ 

 \hline 
rmap(seed;a,b,c,d;w,x,y,z)  & \parbox{6.49cm}{Option 1 - \&rmap(\$seed,[$\backslash$\$w,$\backslash$\$x,$\backslash$\$y,$\backslash$\$z],[\$a,\$b,\$c,\$d]) or !! 
 Option 2 - \&rmap(\$seed,$\backslash$@rmappedArray,[\$a,\$b,\$c,\$d]) !!
 Option 3 - @rmapped\_array = \&rmap(\$seed,[\$a,\$b,\$c,\$d]) !!
 Option 4 - (\$w,\$x,\$y,\$z) = \&rmap(\$seed,$\backslash$@a) !!
 where \$a='A'!!
 \$b='B'!!
 \$c='B'!! 
 \$d='B'!! 
 \$w, \$x, \$y, and \$z are variables }  & In CAPA, the arguments are divided into three groups separated by a semicolon ;. In LON-CAPA, the separation is done by using [] brackets (with create an unamed vector reference) or using an array @a. Note the backslash ($\backslash$) before the arguments in the second and third groups (Which cause Perl to send to variable locations rather than the variable values, similar to a C pointer). \\ 

 \hline 
NOT IMPLEMENTED IN CAPA  & \$a=\&xmlparse(\$string)   & New to LON-CAPA \\ 

 \hline 
tex(a,b), tex(``a'',''b'')  & \&tex(\$a,\$b), \&tex(``a'',''b'')  &   \\ 

 \hline 
var\_in\_tex(a)  & \&var\_in\_tex(\$a)  &   \\ 

 \hline 
to\_string(x), to\_string(x,y)  & \&to\_string(\$x), \&to\_string(\$x,\$y)  &   \\ 

 \hline 
capa\_id(), class(), section(), set(), problem()  & \&class(), \&section()  & capa\_id(), set() and problem() are no longer used. Currently, they return a null value. \\ 

 \hline 
name(), student\_number()  & \&name(), \&student\_number()  &   \\ 

 \hline 
open\_date(), due\_date(), answer\_date()  & \&open\_date(), \&due\_date(), \&answer\_date()  & Output format for time is changed slightly. If pass noon, it displays ..pm else it displays ..am. So 23:59 is displayed as 11:59 pm. \\ 

 \hline 
get\_seed(), set\_seed()  & Not implemented  &   \\ 

 \hline 
sub\_string(a,b,c)  & \&sub\_string(\$a,\$b,\$c)
perl  substr function. However, note the differences  & Perl intrinsic function, substr(string,b,c) starts counting from 0 (as opposed to 1). In the example to the left, substr(\$a,4,4) returns ``ome ``. \\ 

 \hline 
array[xx]  & @arrayname 
Array is intrinsic in perl. To access a specific element use \$arrayname[\$n] where \$n is the \$n+1 element since the array count starts from 0  & In LON-CAPA, an array is defined by @arrayname. It is not necessary to specify the dimension of the array.  \\ 

 \hline 
array\_moments(B,A)  & @B=\&array\_moments(@A)  & In CAPA, the moments are passed as an array in the first argument whereas in LON-CAPA, the array containing the moments are set equal to the function. \\ 

 \hline 
array\_max(Name), array\_min(Name)  & \&min(@Name), \&max(@Name)  & Combined with the min and max functions defined earlier. \\ 

 \hline 
init\_array(Name)  & undef @name  & Use perl intrinsic undef function. \\ 

 \hline 
random\_normal (return\_array,item\_cnt,seed,av,std\_dev)  & @return\_array=\&random\_normal (\$item\_cnt,\$seed,\$av,\$std\_dev)  & In CAPA the results are passed as the first argument whereas in LON-CAPA the results are set equal to the function. \\ 

 \hline 
random\_beta (return\_array,item\_cnt,seed,aa,bb)  & @return\_array=\&random\_beta (\$item\_cnt,\$seed,\$aa,\$bb) 
 NOTE: Both \$aa and \$bb MUST be greater than 1.0E-37.  & In CAPA the results are passed as the first argument whereas in LON-CAPA the results are set equal to the function. \\ 

 \hline 
random\_gamma (return\_array,item\_cnt,seed,a,r)  & @return\_array=\&random\_gamma (\$item\_cnt,\$seed,\$a,\$r) 
 NOTE: Both \$a and \$r MUST be positive.  & In CAPA the results are passed as the first argument whereas in LON-CAPA the results are set equal to the function. \\ 

 \hline 
random\_exponential (return\_array,item\_cnt,seed,av)  & @return\_array=\&random\_exponential (\$item\_cnt,\$seed,\$av) 
 NOTE: \$av MUST be non-negative.  & In CAPA the results are passed as the first argument whereas in LON-CAPA the results are set equal to the function. \\ 

 \hline 
random\_poisson (return\_array,item\_cnt,seed,mu)  & @return\_array=\&random\_poisson (\$item\_cnt,\$seed,\$mu) 
 NOTE: \$mu MUST be non-negative.  & In CAPA the results are passed as the first argument whereas in LON-CAPA the results are set equal to the function. \\ 

 \hline 
random\_chi (return\_array,item\_cnt,seed,df)  & @return\_array=\&random\_chi (\$item\_cnt,\$seed,\$df)  
 NOTE: \$df MUST be positive.  & In CAPA the results are passed as the first argument whereas in LON-CAPA the results are set equal to the function. \\ 

 \hline 
random\_noncentral\_chi (return\_array,item\_cnt,seed,df,nonc)  & @return\_array=\&random\_noncentral\_chi (\$item\_cnt,\$seed,\$df,\$nonc) 
 NOTE: \$df MUST be at least 1 and \$nonc MUST be non-negative.  & In CAPA the results are passed as the first argument whereas in LON-CAPA the results are set equal to the function. \\ 

 \hline 
NOT IMPLEMENTED IN CAPA  & @return\_array=\&random\_f (\$item\_cnt,\$seed,\$dfn,\$dfd) 
 NOTE: Both \$dfn and \$dfd MUST be positive.  & New to LON-CAPA \\ 

 \hline 
NOT IMPLEMENTED IN CAPA  & @return\_array=\&random\_noncentral\_f (\$item\_cnt,\$seed,\$dfn,\$dfd,\$nonc) 
 NOTE: \$dfn must be at least 1, \$dfd MUST be positive, and \$nonc must be non-negative.  & New to LON-CAPA \\ 

 \hline 
NOT DOCUMENTED IN CAPA  & @return\_array=\&random\_multivariate\_normal (\$item\_cnt,\$seed,$\backslash$@mean,$\backslash$@covar) 
 NOTE: @mean should be of length p array of real numbers. @covar should be a length p array of references to length p arrays of real numbers (i.e. a p by p matrix.  & Note the backslash before the @mean and @covar arrays. \\ 

 \hline 
NOT IMPLEMENTED IN CAPA  & @return\_array=\&random\_multinomial (\$item\_cnt,\$seed,@p) 
 NOTE: \$item\_cnt is rounded with int() and the result must be non-negative. The number of elements in @p must be at least 2.  & New to LON-CAPA \\ 

 \hline 
NOT IMPLEMENTED IN CAPA  & @return\_array=\&random\_permutation (\$seed,@array)   & New to LON-CAPA \\ 

 \hline 
NOT IMPLEMENTED IN CAPA  & @return\_array=\&random\_uniform (\$item\_cnt,\$seed,\$low,\$high) 
 NOTE: \$low must be less than or equal to \$high.  & New to LON-CAPA \\ 

 \hline 
NOT IMPLEMENTED IN CAPA  & @return\_array=\&random\_uniform\_integer (\$item\_cnt,\$seed,\$low,\$high) 
 NOTE: \$low and \$high are both passed through int(). \$low must be less than or equal to \$high.  & New to LON-CAPA \\ 

 \hline 
NOT IMPLEMENTED IN CAPA  & @return\_array=\&random\_binomial (\$item\_cnt,\$seed,\$nt,\$p) 
 NOTE: \$nt is rounded using int() and the result must be non-negative. \$p must be between 0 and 1 inclusive.  & New to LON-CAPA \\ 

 \hline 
NOT IMPLEMENTED IN CAPA  & @return\_array=\&random\_negative\_binomial (\$item\_cnt,\$seed,\$ne,\$p) 
 NOTE: \$ne is rounded using int() and the result must be positive. \$p must be between 0 and 1 exclusive.  & New to LON-CAPA \\
\hline

\end{longtable}


Index: loncom/html/adm/help/tex/Problem_LON-CAPA_Functions.tex
+++ loncom/html/adm/help/tex/Problem_LON-CAPA_Functions.tex
\label{Problem_LON-CAPA_Functions}

\begin{longtable}{|p{8.5cm}|p{8.5cm}|}
\hline 
 \textbf{LON-CAPA Function }
 &\textbf{Description }
 \endhead
 \hline 

\&sin(\$x), \&cos(\$x), \&tan(\$x)  & Trigonometric functions where x is in radians. \$x can be a pure number, i.e., you can call \&sin(3.1415) \\
\hline
 
\&asin(\$x), \&acos(\$x), \&atan(\$x), \&atan2(\$y,\$x)  & Inverse trigonometric functions. Return value is in radians. For asin and acos the value of x must be between -1 and 1. The atan2 returns a value between -pi and pi the sign of which is determined by y. \$x and \$y can be pure numbers \\
\hline
 
\&log(\$x), \&log10(\$x)  & Natural and base-10 logarithm. \$x can be a pure number \\
\hline
 
\&exp(\$x), \&pow(\$x,\$y), \&sqrt(\$x)  & Exponential, power and square root, i.e.,ex, xy and /x. \$x and \$y can be pure numbers \\
\hline
 
\&abs(\$x), \&sgn(\$x)  & Abs takes the absolute value of x while sgn(x) returns 1, 0 or -1 depending on the value of x. For x$>$0, sgn(x) = 1, for x=0, sgn(x) = 0 and for x$<$0, sgn(x) = -1. \$x can be a pure number \\
\hline
 
\&erf(\$x), \&erfc(\$x)  & Error function.  erf = 2/sqrt(pi) integral (0,x) et-sq and \emph{ erfx(x)}
 = 1.0 - \emph{erf(x)}
.  \$x can be a pure number \\
\hline
 
\&ceil(\$x), \&floor(\$x)  & Ceil function returns an integer rounded up whereas floor function returns and integer rounded down. If x is an integer than it returns the value of the integer. \$x can be a pure number \\
\hline
 
\&min(...), \&max(...)  & Returns the minimum/ maximum value of a list of arguments if the arguments are numbers. If the arguments are strings then it returns a string sorted according to the ASCII codes \\
\hline
 
\&factorial(\$n)  & Argument (n) must be an integer else it will round down. The largest value for n is 170. \$n can be a pure number \\
\hline
 
\$N\%\$M  & N and M are integers and returns the remainder (in integer) of N/M. \$N and \$M can be pure numbers \\
\hline
 
\&sinh(\$x), \&cosh(\$x), \&tanh(\$x)  & Hyperbolic functions. \$x can be a pure number \\
\hline
 
\&asinh(\$x), \&acosh(\$x), \&atanh(\$x)  & Inverse hyperbolic functions. \$x can be a pure number \\
\hline
 
\&format(\$x,''nn'')  & Display or format \$x as nn where nn is nF or nE and n is an integer. Also supports the first character being a \$, it thjen will format the result with a call to \&dollarformat() described below. \\
\hline
 
\&prettyprint(\$x,''nn'')  & Display or format \$x as nn where nn is nF or nE and n is an integer. Also supports the first character being a \$, it then will format the result with a a call to \&dollarformat() described below. In E mode it will attempt to generate a pretty x10\^{}3 rather than a E3 following the number \\
\hline
 
\&dollarformat(\$x  & Reformats \$x to have a \$ (or $\backslash$\$ if in tex mode) and to have , grouping thousands. \\
\hline
 
\&roundto(\$x,\$n)  & Rounds a real number to n decimal points. \$x and \$n can be pure numbers \\
\hline
 
\&web(``a'',''b'',''c'') or \&web(\$a,\$b,\$c)  & Returns either a, b or c depending on the output medium. a is for plain ASCII, b for tex output and c for html output \\
\hline
 
\&html(``a'') or \&html(\$a)  & Output only if the output mode chosen is in html format \\
\hline
 
\&j0(\$x), \&j1(\$x), \&jn(\$m,\$x), \&jv(\$y,\$x)  & Bessel functions of the first kind with orders 0, 1 and m respectively. For jn(m,x), m must be an integer whereas for jv(y,x), y is real. \$x can be a pure number. \$m must be an integer and can be a pure integer number. \$y can be a pure real number \\
\hline
 
\&y0(\$x), \&y1(\$x), \&yn(\$m,\$x), \&yv(\$y,\$x)  & Bessel functions of the second kind with orders 0, 1 and m respectively. For yn(m,x), m must be an integer whereas for yv(y,x), y is real. \$x can be a pure number. \$m must be an integer and can be a pure integer number. \$y can be a pure real number \\
\hline
 
\&random(\$l,\$u,\$d)  & Returns a uniformly distributed random number between the lower bound, l and upper bound, u in steps of d. \$l, \$u and \$d can be pure numbers \\
\hline
 
\&choose(\$i,...)  & Choose the ith item from the argument list. i must be an integer greater than 0 and the value of i should not exceed the number of items. \$i can be a pure integer \\
\hline
 
\parbox{6.49cm}{
Option 1 - \&map(\$seed,[$\backslash$\$w,$\backslash$\$x,$\backslash$\$y,$\backslash$\$z],[\$a,\$b,\$c,\$d]) or !!
 Option 2 - \&map(\$seed,$\backslash$@mappedArray,[\$a,\$b,\$c,\$d]) !!
 Option 3 - @mappedArray = \&map(\$seed,[\$a,\$b,\$c,\$d]) !!
 Option 4 - (\$w,\$x,\$y,\$z) = \&map(\$seed,$\backslash$@a) !!
 where \$a='A'!!
 \$b='B'!!
 \$c='B'!! 
 \$d='B'!! 
 \$w, \$x, \$y, and \$z are variables } & Assigns to the variables \$w, \$x, \$y and \$z the values of the \$a, \$b, \$c and \$c (A, B, C and D). The precise value for \$w .. depends on the seed. (Option 1 of calling map). In option 2, the values of \$a, \$b .. are mapped into the array, @mappedArray. The two options illustrate the different grouping. Options 3 and 4 give a consistent way (with other functions) of mapping the items. For each option, the group can be passed as an array, for example, [\$a,\$b,\$c,\$d] =$>$ $\backslash$@a. \\
\hline
 
\parbox{6.49cm}{Option 1 - \&rmap(\$seed,[$\backslash$\$w,$\backslash$\$x,$\backslash$\$y,$\backslash$\$z],[\$a,\$b,\$c,\$d]) or !! 
 Option 2 - \&rmap(\$seed,$\backslash$@rmappedArray,[\$a,\$b,\$c,\$d]) !!
 Option 3 - @rmapped\_array = \&rmap(\$seed,[\$a,\$b,\$c,\$d]) !!
 Option 4 - (\$w,\$x,\$y,\$z) = \&rmap(\$seed,$\backslash$@a) !!
 where \$a='A'!!
 \$b='B'!!
 \$c='B'!! 
 \$d='B'!! 
 \$w, \$x, \$y, and \$z are variables }  & The rmap functions does the reverse action of map if the same seed is used in calling map and rmap.  \\
\hline
 
\$a=\&xmlparse(\$string)   & Runs the internal parser over the argument parsing for display. \textbf{Warning}
 This will result in different strings in different targets. Don't use the results of this function as an answer. \\
\hline
 
\&tex(\$a,\$b), \&tex(``a'',''b'')  & Returns a if the output mode is in tex otherwise returns b \\
\hline
 
\&var\_in\_tex(\$a)  & Equivalent to tex(``a'',''``) \\
\hline
 
\&to\_string(\$x), \&to\_string(\$x,\$y)  & If x is an integer, returns a string. If x is real than the output is a string with format given by y. For example, if x = 12.3456, \&to\_string(x,''.3F'') = 12.345 and \&to\_string(x,''.3E'') = 1.234E+01. \\
\hline
 
\&class(), \&section()  & Returns null string, class descriptive name, section number, set number and null string. \\
\hline
 
\&name(), \&student\_number()  & Return the full name in the following format: lastname, firstname initial. Student\_number returns the student 9-alphanumeric string. If undefined, the functions return null. \\
\hline
 
\&open\_date(), \&due\_date(), \&answer\_date()  & Problem open date, due date and answer date. The time is also included in 24-hr format. \\
\hline
 
Not implemented  & Get and set the random seed. \\
\hline
 
\&sub\_string(\$a,\$b,\$c)
perl  substr function. However, note the differences  & Retrieve a portion of string a starting from b and length c. For example,  \$a = ``Welcome to LON-CAPA''; \$result=\&sub\_string(\$a,4,4); then \$result is ``come'' \\
\hline
 
@arrayname 
Array is intrinsic in perl. To access a specific element use \$arrayname[\$n] where \$n is the \$n+1 element since the array count starts from 0  & ``xx'' can be a variable or a calculation. \\
\hline
 
@B=\&array\_moments(@A)  & Evaluates the moments of an array A and place the result in array B[i] where i = 0 to 4. The contents of B are as follows: B[0] = number of elements, B[1] = mean, B[2] = variance, B[3] = skewness and B[4] = kurtosis. \\
\hline
 
\&min(@Name), \&max(@Name)  & In LON-CAPA to find the maximum value of an array, use \&max(@arrayname)  and to find the minimum value of an array, use \&min(@arrayname) \\
\hline
 
undef @name  & To destroy the contents of an array, use \\
\hline
 
@return\_array=\&random\_normal (\$item\_cnt,\$seed,\$av,\$std\_dev)  & Generate \$item\_cnt deviates of normal distribution of average \$av and standard deviation \$std\_dev. The distribution is generated from seed \$seed \\
\hline
 
@return\_array=\&random\_beta (\$item\_cnt,\$seed,\$aa,\$bb) 
 NOTE: Both \$aa and \$bb MUST be greater than 1.0E-37.  & Generate \$item\_cnt deviates of beta distribution. The density of beta is: X\^{}(\$aa-1) *(1-X)\^{}(\$bb-1) /B(\$aa,\$bb) for 0$<$X$<$1. \\
\hline
 
@return\_array=\&random\_gamma (\$item\_cnt,\$seed,\$a,\$r) 
 NOTE: Both \$a and \$r MUST be positive.  & Generate \$item\_cnt deviates of gamma distribution. The density of gamma is: (\$a**\$r)/gamma(\$r) * X**(\$r-1) * exp(-\$a*X). \\
\hline
 
@return\_array=\&random\_exponential (\$item\_cnt,\$seed,\$av) 
 NOTE: \$av MUST be non-negative.  & Generate \$item\_cnt deviates of exponential distribution.  \\
\hline
 
@return\_array=\&random\_poisson (\$item\_cnt,\$seed,\$mu) 
 NOTE: \$mu MUST be non-negative.  & Generate \$item\_cnt deviates of poisson distribution.  \\
\hline
 
@return\_array=\&random\_chi (\$item\_cnt,\$seed,\$df)  
 NOTE: \$df MUST be positive.  & Generate \$item\_cnt deviates of chi\_square distribution with \$df degrees of freedom.  \\
\hline
 
@return\_array=\&random\_noncentral\_chi (\$item\_cnt,\$seed,\$df,\$nonc) 
 NOTE: \$df MUST be at least 1 and \$nonc MUST be non-negative.  & Generate \$item\_cnt deviates of noncentral\_chi\_square distribution with \$df degrees of freedom and noncentrality parameter \$nonc.  \\
\hline
 
@return\_array=\&random\_f (\$item\_cnt,\$seed,\$dfn,\$dfd) 
 NOTE: Both \$dfn and \$dfd MUST be positive.  & Generate \$item\_cnt deviates of F (variance ratio) distribution with degrees of freedom \$dfn (numerator) and \$dfd (denominator).  \\
\hline
 
@return\_array=\&random\_noncentral\_f (\$item\_cnt,\$seed,\$dfn,\$dfd,\$nonc) 
 NOTE: \$dfn must be at least 1, \$dfd MUST be positive, and \$nonc must be non-negative.  & Generate \$item\_cnt deviates of noncentral F (variance ratio) distribution with degrees of freedom \$dfn (numerator) and \$dfd (denominator). \$nonc is the noncentrality parameter.  \\
\hline
 
@return\_array=\&random\_multivariate\_normal (\$item\_cnt,\$seed,$\backslash$@mean,$\backslash$@covar) 
 NOTE: @mean should be of length p array of real numbers. @covar should be a length p array of references to length p arrays of real numbers (i.e. a p by p matrix.  & Generate \$item\_cnt deviates of multivariate\_normal distribution with mean vector @mean and variance-covariance matrix.  \\
\hline
 
@return\_array=\&random\_multinomial (\$item\_cnt,\$seed,@p) 
 NOTE: \$item\_cnt is rounded with int() and the result must be non-negative. The number of elements in @p must be at least 2.  & Returns single observation from multinomial distribution with \$item\_cnt events classified into as many categories as the length of @p. The probability of an event being classified into category i is given by ith element of @p. The observation is an array with length equal to @p, so when called in a scalar context it returns the length of @p. The sum of the elements of the obervation is equal to \$item\_cnt. \\
\hline
 
@return\_array=\&random\_permutation (\$seed,@array)   & Returns @array randomly permuted. \\
\hline
 
@return\_array=\&random\_uniform (\$item\_cnt,\$seed,\$low,\$high) 
 NOTE: \$low must be less than or equal to \$high.  & Generate \$item\_cnt deviates from a uniform distribution.  \\
\hline
 
@return\_array=\&random\_uniform\_integer (\$item\_cnt,\$seed,\$low,\$high) 
 NOTE: \$low and \$high are both passed through int(). \$low must be less than or equal to \$high.  & Generate \$item\_cnt deviates from a uniform distribution in integers.  \\
\hline
 
@return\_array=\&random\_binomial (\$item\_cnt,\$seed,\$nt,\$p) 
 NOTE: \$nt is rounded using int() and the result must be non-negative. \$p must be between 0 and 1 inclusive.  & Generate \$item\_cnt deviates from the binomial distribution with \$nt trials and the probabilty of an event in each trial is \$p.  \\
\hline
 
@return\_array=\&random\_negative\_binomial (\$item\_cnt,\$seed,\$ne,\$p) 
 NOTE: \$ne is rounded using int() and the result must be positive. \$p must be between 0 and 1 exclusive.  & Generate an array of \$item\_cnt outcomes generated from negative binomial distribution with \$ne events and the probabilty of an event in each trial is \$p.  \\
\hline
\end{longtable}

--bowersj21055258664--