[LON-CAPA-cvs] cvs: modules /minaeibi survey3.ppt
minaeibi
lon-capa-cvs@mail.lon-capa.org
Thu, 19 Sep 2002 19:02:20 -0000
This is a MIME encoded message
--minaeibi1032462140
Content-Type: text/plain
minaeibi Thu Sep 19 15:02:20 2002 EDT
Added files:
/modules/minaeibi survey3.ppt
Log:
final presentation for PhD survey
--minaeibi1032462140
Content-Type: text/plain
Content-Disposition: attachment; filename="minaeibi-20020919150220.txt"
Index: modules/minaeibi/survey3.ppt
+++ modules/minaeibi/survey3.ppt
ࡱ > $ ! " # n V:
+Ą;PNG
IHDR ' V g3 gAMA pHYsN PLTE ---!!!888XXXCCCOOO___fffttt{{{mmmĝk IDATxicq73l9f҉&-+{bGojThׇ,ϴzȺ* = zvh & & & & & & & & & & & & & & & & & & & & & xZ= <ቭO <ቭO <ቭO <ቭO <ቭO <ቭO <ቭO <ቭO <ቭO <ቭO <ቭO <ቭO <ቭO <ቭO <ቭO <ቭO <ቭO <ቭO <ቭO <ቭO <ቭO <ቭO <ቭO <ቭO <ቭO <ቭO <ቭOd?/_<y ,Yfv'6<<y ,DOd' Olx$<xb Y8 O<Hx"'@q'6<<y ,DOd' Olx$<xb Y8 O<Hx"'@q'6<<y ,DOd' Olx$<xb Y8 O<Hx"'@q'6<<y ,DOd' Olx$<xb Y8 O<Hx"'@q'6<<y ,DOd' Olx$<xb Y8 O<Hx"'@q'6<<y ,DOd' Olx$<xb Y8 O<Hx"'@q'6<<y ,DOd' Olx$<xb Y8 O<Hx"'@q'6<<y ,DOd' Olx$<xb Y8 O<Hx"'@q'6<<y ,DOd' Olx$<xb Y8 O<Hx"'@q'6<<y ,DOd' Olx$<xb Y8 O<Hx"'@q'6<<y ,DOd' Olx$<xb Y8 O<Hx"'@q'6<<y ,DOd' Olx$<xb Y8 O<Hx"'@q'6<<y ,DOd' Olx$<xb Y8 O<Hx"'@q'6<<y ,DOd' Olx$<xb Y8 O<Hx"'@q'6<<y ,DOd' Olx$<xb Y8 O<Hx"'@q'6<<y ,DOd' Olx$<xb Y8 O<Hx"'@q'6<<y ,DOd' Olx$<xb Y8 O<Hx"'@q'6<<y ,DOd' Olx$<xb Y8 O<Hx"'@q'6<<y ,DOd' Olx$<xb Y8 O<Hx"'@q'6<<y ,DOd' Olx$<xb Y8 O<Hx"'@q'6<]ꕄ <xb[)vo$8$1 x<y9'
'P<OЁ'6<-nF?<yE>u>'
'i(JnEx"`f퉱5/J8XhE='4S x O ` i%܊D ,4"'<'KE' '>;+x`Olxb TEqBN<1_|' .'`"& x<y%x"o cc=' &'9O#Y:93K[x`Olxb Yg nh8Ty' &'Yo vAaN-u7L8X O-jRy' '<1 xBxbKቒA.Y'Ā'6<ltӆ?<<kRm˵kn+xOlxb <:<OHOlxb <quA9<OOlxb
&8U9zOBXu9='iurϺ<@B,5: x <&X_/u
Gx@B,S`o xBxMDCn' D,4A|x' O,@G_LZx`Olxb <@B -D !4;O@B -D !4;O@B -D !4;O@B -D !4;h)O]SUuI{}êA-8Chwc]u'/ Yq'+|yqcsv**8ChwPdO2C;Ϥ<xaMV+GB5' O VA1=11d~hě~FO@B"zό!'6ۑػW8ChwP<O4~tf/櫞>ȜD !4;('K~VhSKQ5˨
<xaM J5!'o5MTOYװw9<L\3h-m܃ X}EĸwuߚS'@0&Xyę&C1U{ ŷ&/\V=+<O&Y+ߋkUƹq<O8aMςA9Ou;A4|UO' ' VA=Qи[GO NB{4mbܢ=Rp.3OO NBB{].v]y' ' VA=aK圭{FBO NBbx´z40欟P+0? O NB{BvŊs<O8aM
tAO' ' VA;z?7|O<!4;(yzO9sou '@0&Xy-g'<TG<O8aMJGWʫS x Chw(h(rWTxbx q`'N2s<4'@0&Xy≳+D)<!4;(O;x x ChwH؉)<!4;(Ot<6 VA/jx W+D<Q0&Xy%yՒ;<!4;(Od<6 VAxbOj`'zx +4<1YEjx q`'ZɯH'@0&Xy
'!4;(EOq'@0&Xy.N+=Qix q`'q'@0&XyH( x ChwP'@0&XyH x ChwPSȆ' ' VAIzm x ChwPw( x ChwP hx q`'mO NB0# x ChwPϳs\d x ChwP"^YY O NBa5?'@0&Xy%v9BQ' ' VAxb?h'@0&Xy%{fK%<O8aMJlfipXMO NBRD<y˝ xD
ChwP*/)#Թl' ' VAx9937d+d<qܹ⭈M;+d<1EѸm̓' ' VAx7Q' ' VAx)Ea-f<x ` yBU&C(rx Q'q.Ov8''nSޝ=' xb(<c@O+o6τ' xbݤ^]VFt9<"Oi;q94?aP<n~&)8'/ľ7.<O(F?ȾG_;7&I< O~wLh'MN?'@8&X3ʕ;4VƚДػ' xb(}bo=|eNhp*N<<fZѰF^g[p \Qd$IOP?Ol>MӼRMQpmcy|b.Gt4zi2]d]G*4?Qj/)
!O7rDO0.2qh,ɪtjݛH:'
<F[[ CW<T]7)3WmgpU4,a7r|QUQl>yёs,.??x~+Pq%'VxNzu!E8_xbU\'ʜ|*=&!a_pĪ8X\{5cSdZaB9
'@Pze|~B9r'<BY>-+vyP!EE'@Oo.!a0 !)"4rNx ơHXo8:x )ǡHXo8`r<ԠHɡ/@8tF& !9zO 0Cl8/ q貍?cr<LlHq5; f/^'=<,e+9O 0[.R\'"@40' F/^' x !-w| FcaO 04r<lHqH aTXJO`x ^:=?x 1\Z=F<8lHq;@c"z+!"Hevz[ xsK`x >{$ cl O Ӏ{E
; Ncl E<+"u0Ha B
<;C5J\ |+E
= ^Bu-wz +a"O Hq%`˝x _"ŕ-wj u݀fx功Ұ-"
xѕ"u-w* P9hl/'m;'$'mbO >nD
Ẃ' !{b#-wW'Mfy [KS\k[yDSV(0o@Jx<D@cnobl'3@|-wWHO G:xQ8W}<q]rwo?6XmHhӊ֪^3Jr49"u-won Y+ -wWYn[*ZnkČn~ٺfQQ2cmz~骏!36Nl?~W}WwXf[rCFQ/R埪~zbju.Ғ{L1)xJÿ_ۯ;wm!EkBB?VFЋXFX^hXⵉU&r=^տzb[hv&uʹ/0wwM\ƨaEø-wGeB5zDA `k!VMׯcA%PoW?zNx-x6̀uj\in#!4ujgDZxr~:{j[T6z,R¾81D.H+Wk_frGbߜ*n-Cu.'~wŚ;'X]VԖ;/O\f9rgDOyIT.x*Rxy6cޖ;'pC[^0Ζ;/O=?oHف]]tToo_+R`m7U`ŲOlŬOw4U\#ll<E_Whh)G?R]f9' Ou!N0o'sxO<kRM98~Ǖ=Hϖ 1K7ݠ44t~fb[3' >KmoWLqД"-w3v7m'@*'J\0uZJ湀ܦқzle<t&B䧴bBanQGe3u\O[,qs9v+
'G~ƹX#jw;Pl¼Bl3r?/-wX[8k㧅Dj Gi [ߔ(R`I:%|DH>-;o}ڌ/1[R\;x,CܯVn3.zDѿĩH^'b~#jE )-fߧCڷ`)tZQ$M(?Zh'8ItcÊEޖ;$P'ivx 'R)Dږ;O"{kglkrOL&$DbyZ)@O:t[ (N"-wR;>z'@l,[d?gp?*RߔyW 1Q?ZbmЖ;SyBf36A}Ǽ;|wrD4a,O<OTm?_e 1yj#<Z&-wf&ybH':/v,F6/c^WQU'eڠ7ۗߵ^>xtpl3?&{%Zgz8/z$_Mꗆ_ p֓D//n饇r_)xt#~OĊ'V㉗HW}x)oB~CgxUz+>.+ܦPAbYч먞8Kka|1؆XreoN-p25nKC!S1ߙJ
Ot?W6*h8-OTF}^3P*ֿ߂Oڊ)z=l!p8Q{ƣ*8MSX{̣7]Gx{98Ĵ})1<eo3d]O\ݖ<ø)i?`zDi1S ]kB/f(?<u2d~6ƮmܯqOEj_z-wyhpR_Ű+GFEhF-
{hBֿQN%<Nz*hu"b[~~+<2vUmK֨7ə.q+*灨м/WU3bSOOt^p۹~͡,<G4[sS47't.`RQd^i"ޑ4MUSPl2дi^3[[5DdWQ&8EcQ><ʓ\і<qϊ}uH<Kv-lWjaGihuNJX=tJ͚u~XwWH7cO٧
jxbߟobsO_fIcmʤt4Mϗ"Ye?[ڨ7xJq֑=>0yϊ,Q_<Ha<ߥ> i'-wxbm.Wi4Q\Ϻ=7L%&EןlJzg,>87M%,~;gϬI~U~eU*BIcj'lDT&[+DŅ&ta瞰;Tb;#gQuTWKiΥ5yg)$1M16'1ZkWrWQ\DՃ9QʘCFZLM4%;sS>dMT#)O!y,VcDl!5qm{uyk O4Ɂ1)Ӛ&(Xl5MTf)vKlG3n K7g%EQF(KrԚj"/{CϨ䦻55A}5ygX9o_-y.Z~0f%=F%I=sߛ·e[LQ4M5ؗƟn/7?t̢v<cB1Oo$&bF/d(QiZ*$#CyfTgPҞ+Kz}F4suG[Ι&
E)G32g|PWP|fx \yŔh5-d،=4& .8a`жy9 F;Ŝz7bS=q:tZ,o;fs:QUXr-@ZuI%X'Γ({f~ P,A9vYmSc/raw4?qȼbnKbA_a.#~bGoØV!tNa8%zu@:{HDJwkԞ8\DoԽ^eaH$'yStvZt1 g*ozB|07S}vOT%%닗ŶJԙYpPVq}'6:xu]ǜ1A
w_rO.ށ5rH{vQ틼aUof^";'zzӌւDA!]?+>oCU"mƾTe(9Wi2P:5kŇDck=:*{BZEKjv.]>K^mt}zHzݬS\SiUA|MCZ˯v|>bY956#Y>R{=Iè=&gSu]9y@blhձJtҞpY14O.,zjvJZy$qNmc՞8 q4kB[}]PO.dmfЄf?7msv9T&I5镳jO䮙:Afsk.nvM(6yRcn'S.5,%٧qzB(P(d[XwN`m5i' 32wM(3`O6{2< ?w5wD"@luii3 qY'r״pBKzplE=PvZ'n*'|]K+z1xŊ=9@mS(($=zA;PVNg[ ܈O7&1nj.nCǪ=<)w# 5^(<5Ķt/>q^7QHZ=mq4ճ^OLaޝ嗪w)Ie(KZYRK<QģsmcY[n|8W쿥GplzhPQO$ ?OT!<1zbpksU7fm^Ox)O(crɟN8{o'친2,xR[X<oG6Dss7Pf{غI8=-O; LmzbS)`Wre ;/O䂞=Ʌ،qV ͇͌5@\
OTaGBBXKԇ6X'x>:==D81qx_aO{A4!t:do Luxon *`{lz MR#ۣn*O4Jf썳VO+D|z=xkgxOP1n#Z=Qc|-{-A
O'6.ִ(k.*|[ٖ
ڰ'NoP{n OP5'pO]ANx6߸yTflROiJ{Ӗ:7Ol|7J=ѭT '"l%ZLm OؾEȎ쳋Fӱ=<b=z`36X'xXT4ZO|. mPV|w2ۅGmxBe)+wZ'=:<H'ˠ_Qlx"2C9QoFwZ'.'TO+P<YmoROD"]Qvy>zzOOtA=،Dl<;'TZe{&㉘/,7Dzު'~xVS<qk& &u'/-!6ꉳ"hYR<t¼{\slT<2% 'PM(^&N'L͐'
XtbOtت_0fl~dzri'Q6`m'se?-r'SE!OXSNxڠ'&Ӊ<1*P_v/E2~]ke<ܔ]rg9Nf&^'~;ߛ'Bn?+vfM=OLKyBW&.7Z\gO}V_wᠾ_9E8%$~qz]4ηM=ؾh2|<A<1yKyB?4ũ-cAɻ<(w}dj܌6C6~0+[żinj{0|d<vGv
rc&K̻xv)DD2E/l[^]W *nP'<^Hoy
Q'ADތ2/ĕ<%D/n__ϵ꽓\ zbG$ګT{ҡ۸[2mmci?A_z{,䩿hz;g[X xdAO(O͏o{MFDesQGj3e闻Pr?$h\'^oiSu$Oex4Oňŧ0MDzw"T˫_eݩtFOU8]TO~<Ae,YߦN-k`Hg9fTد[vj?,P~y{T<G{.wE`xfLxam</szbo5
fl4Гez~U fxbTUUW~Pe::}
<AD>O\7ck{scrq8~ݚ֩hS?eIh#}-;tnOP<ѯuO:KXϜRXreBJ_M7=Jd[]ggbP$ǃi 'T=ѓ5/0pRGo~aL]r;D}<yiyO}%pT/mUŶ=1<ѭgbQ?ޏRMv=i3ӪX/O!^*ںĩ}4q@'ާ%,yzGm-O+"CUorUC^b>:NSZͩ*~o_WKO)alq̯5hmcE2,/M~~cbQ36;k n6TMݿl<w6/[[ۇ':8 r3˦=<>O|-nk⭭%x,ݡş|R("'LNWAz04?vhxl (xM
SQ?`(P'
qnGCN;wjוwhxxBSrی=7_HAu\_.OOjb]T\@xt^ ~niWZ❭9Gno&wG?핒ؔ,
zȣ_KMُѧ|/ 8_?ǂ|`(:9U|^WBn;dy/ޟ5z,G'~=!hyԸ763 ȻX(Pf\(z`ϥW/ti0fPNu'ʱw OO+D9iP@{(;U^'cy/ޭ_&?xӍVO5Iw0Vs{Bwc/剳#C~|ePC? <Iz_iW/u+'zsiɈ3_8s{i剳ou_cˠXob=MYwP CK[RoyԶ'cĔ1ӋeKG xb8ަ;30N*G⛱}<!Q/OQN䜜6zzL@OQUTvhhFe<Q'pH<)&w}w<f BZIq7O~h>ͳtpFN{+GaU`^'D7mx$'KC8˩/rP/L-~iK((aOh{Zs_ʱ'm=AɁ\?NܖmG%!vwC~yZ_ޑ,M"'w60ה!!7w6uO})`J'x z:O;9}
Gmfbnƶ06أP1<9q=ߚ0&*'vG֨|W[pl <^О({qU->m.1R3cekI9:҄hFOa9'yOH&1YLq}v3~OO86uH_a'j'n?Oؓtwt[4E"c~1̨n{"&ؚx((nl~חgqǒyp&TMK&
7Smy5<QU|O(EI˭91}|Sq7c[G2~iF~8Kv'%rML"gY?u˺EU>5Q_;7>[iBմb{O<OY
O\?š,˟G@Π<oGI`_r^ÚŠ wlS+ej5DAt#oTb4FP<T-b S'_<Got*c8ڶ_ 9(SG~Oمф)Y<Q(33J'X˻t_熌b~ak{v^3-]yWXH{"wi&E/10{r8ۀOq˓/?0&L≃qO#ooM*|wƹ%^,Nā¿2f\T6+7*=-9qN|6̷MEfLox.kd!"R-/:M9m.Q& Hq֩m9Εsq+`Ϳǯ4'4yZm!4G=b^YBw>!w3}cCi$Q۹a|ƾXR-$K_a7;=3u>{+zgG͠l7rKG_1;5v{9&`CIr/tUZ4T,PL:[v|yI]*!Zrhma4!-{4!_wZ"AJI%VBLAƔ@KI+Cs2u ^yr9y?vF͞(vQ .tI/9ɇ[ЮE0d~8;pa{~ &i\ Y.}7$+>\ZN<0^5g=s/\4QkQt^M[`d`5Opյ-w)>0Z),*A\rA9фxߋ^Qzb4`pY85Q c~:5KkdGݽ.}I_k;2^C~iAGP=/cx
{$M:}1R4Py!ŽG(_7Mմ/~eֆC+GOS8¥o6Nd!PK}G#3:7;1һM=SzO4TUw̎[-o~0wk譡m|xcQtVb+/%I!!]Pg!~:gaE#);Ѧo{ٰ Y ֤'{m{goigAo}Tw:LcwE1߿ynhվ8N>(INՀ6c\1=7ݲS86R܄6`q'2pf%8ZSOԑgfY^k&<>s+u[MbݭiqUQP=$V:h߇dE=r-!5ksYUO\L}Jp<}3,Sa0e#]oDcOua)1Qcϥ@d'x"Ĕb #,XB݄уP=\~D{b<t=/ :k9s4f/uOiC}0-NFsC+A܉Xr_nCfFbFNqq*S
a߸NKU`O%SE^o>Q~B7~p .Ta5ͺE7G9\)zyǶZ\GBLCsՒx[cJ'|h7X(^N艊co? 蛱CXҹ{>!BMxRHZ-|]RڥcVNKz}\lgDNn{snY b 6c1c_G4:K]]p~qj'ƵOM+퇜Ʈkt8j+=Pf827^=χV<A_K2tK G#퇨G]]K硄rr, y:<8s="'wnLκ]-mY'xPx zbOM~Ο@qOoZ)qd!N@SzcAW܈HcvW `;.ʗ&~CLCYM_}y>jg[ v.ƭ_-Q+J;p kQ<_Ȉ [{]b|QдSNA!kNN" w ZB}"ky$!N;VY'qeʞ ~7>ٻ
%uՖ="
OiVʿG7ҡ
LIzV><u¸IQ'.U_DF~GuUlg3
RsKE<5
=K e JoY87PuoH;fM*3B-c??&$ `2XD\hv;#rDJipvc [ ``WnWRg?qKz;WȴS9@[<aV:_A$8V:+9oܒIƅ!N],`H`ӉI1gr#qqi<pWAN&ٌnnD[e8-N;9ah3qO+c?üIpq^,iUybmqcȴAAQԆShdh;<lt 5M?rݓg9l)flS C(b'Q
@wc8'5(#ھy=v8q?e*AN7@Si!0R~ӍjB8_М0]qKʾv79JW\:pL;=
PVzNmh<lH&l"2}2nIsҨ[[oG!N7cxBo/NHFܔϽ1zc@]NB}}m#8%8fg<zݏ~/NH 7y2a2<,PŮl1?~luNwEƔwHe4i:vNvF_dNрk3N&n~''WIO<%זHM;=72H"vjc-\f `}b]0D.;>نIi'c7X<1XWNrٴ9ݽ|Cs2'=APP"ExuUNoM;>#RȦZ>$hxX zb]b%D(b-}|!N1qئdflj)vE\L ֵ,SxbWO'z;D}c@дqLbQLBmҋ9)w}lDMXxX zb]bG0|8OŌ3'>v۸]Cb[+EVlnfcu<,=ѯKJO~(|,flC!NJ|Misؖ3||Du8'Ox
`!;N'Yȁ_7~ȴC!)Բ*nWdNԧy[n,k˛MkDӚa:1~$q}E4}3qWVFx$DN&_NO˖{ `艕}ng_ض51c}FANu,Д;h1NnpN-ߊ'.7M?ؖ&'4d܌dBPzW+7B"v{xgJM}1Y~*_phbgEpjNд},4_:llک*~+<,<OVQ(ʲƊ,T8ƀINʫ4ԄMG1/jz[o@xXHG
]Fdz|GO!V0j M㦝zzߡuQ'd=AQ0+nZed7"c^pږ/Ku#<,=&j1-MoS1}~bʗΞ{T<,=Z"W,=\d3+ :A'/;'=iƹw1aNC,Є&/}::tCHI Vj?HXХ7g?h.Bhq,6~1f!tؒfxXHяUBٍi蛱Mg8 C%HǭB:ў
{
74FM1D]%^zo$<,Юu+ٰ}*?&JM;Eߌ=DhrS$71! hϟXqɇ\6LIj%aNM,ДӞbWMhW FV퉋/~mΓɷ43v0t@[~exXHPaO<$=bSM;Ӊ!3Au_\m7E|O ]ЎZMȋ|?%CaNEqrmzB?=x1DI'lʲ(ySe(_ƘۛS+M;SSL1\p1%+/ĩss `}Xٷ~"eUҠi蛱c,Wn'z!.Fr=v>´/BvO )z8
4iY)./z~i[? `ge-Ui蛱B%dzx uyvF637aNaBXKH:_,eNCZ)jLK@aN1@b,]Ap=d-}GAܲ;\A?wF#46'KLk!K:xie<A|wݞH+M;=D?Ph_j~a/ `9>SZ7i蛱"dIAlr-->
'}11 'GHl?vRG5// 뇴zh\˷%f+?"t1g}2\kH|p CڴY';϶*$ vXT~aÛxء(W]iY'XaH8l6BRK[̓NC<<oy!>^`ceٰi'J;bƠ#|F~Ꮩ <7ױ0N⾳UmDaN7coUV yH;(VMi;DFMo
78{!Nx\ໆOsn%
U"u}Cl~
j=Z<~'@)/}34B 'XGi< J ^M\+xo#L'C>F< B]KҊB)°5l)fSJY
$rְi{'<,/2Q~i\@rdsBYhp6ԅݔW}e qmmSN;~B&~x犃4 $uo)8IY%¦o6N/gF.}@|gɇQ5a BkJæb<zB̫b扥Oل'+c)'HVPZ:Pn"d&܆%/6O,}&<hثdɧv2> Dt:;L/6OyT'͵O [p)&Æw¦oƾdpH~59xH&hK$c_a87zt
DaG$C,:ﴥxP{4>-n)]cDcഓۃo<Ÿpn# |ŹO *%El ]-U vrی=zy ua>O *P,o"Vv8Go7[\AկJvzӟW8֥_jk4+8qw'̭. g1:7^3-㍓0Dqrjj-c_]Lxv= )z@)I`tHoɉ4tzPxE4uOiKm<Ӿ(VY`CrCc티ʲ;s#99nXsj1X }B|(vo~]V',R}.)ތTsZQeѩju`_MBpj YS E|rG-~
kJ8<1iee>Ux(ȭ_&C]J 50jX0gs=go̜iƽ_(ٻ!FO˝GN(qx0iW@~D[d~i7!JSNo<<}o^!4Y /l @fIOA?' ²kSoJd]8OrR1_{i2.F<T7܄K!gzH D ,'9P;)K$?č+Ǯ58ml_n]ѯ<R~`&Û9Q6ek6zbv2/9g
IƵTEE<./f#3)'É2e_808O-;O%=q!ar#-7 =wK-{ݭ_FVD2:m7Pn3O>Ƨ(m+T|kbó73\c6d[,@xlqAQܟxc;'v{T<.SoyCgd(MZFnؾqr_NA$0Qd)DBX|r*c0,{nHV^料<{>a+/7Qe˽D]eE>AGధ}$k~MӼ}8GOB]*1;~!j;oXute>M(V==u'@cה9!j.h(C `~^5Ojw"b\J aG.^z#+Z9"ccUl;uBA?v\@]Ee35-@`Ǿ4#U,'#}g9(N#kx7wyeC؉
K&[hll٠L<zʴW K#,}TH<{.ịl-g@q~i2rdJu ŋ^BDinRˇ*p~HbelV~a__c-;r G@r&[N*M3s@8y~T.U5*J PA hn'.']Wvz"j;q
ہsMIoՔ1Z OW*U`DŃ}#Kz4; DGA7$OJӣI?bTuY=1mNx'zNt5FQ*5 J\Q<wC<'bu_i,Cֳ0t~IB:tL5kONokfw8k
gCzqȻpVU8;uktK=NfOg~kcgh{7P?09c#{y{GiřwQ;ΚxLNc*ֶk]V~p47dYGtAhn֨g=qGs&Iݹuuӄ}~"VB&K:{H50v5: ["i((y"ƪXB Ðq~cį_87''kvYBcZ~jP?G!Xbr =G*'FY_髰oHDe!zOx$XrcjQV>ȚCgq6lV9L8\v+K%ܺ\=lp0(R"k 4WUzyr4@e<t<'>ysǖ`d=a\@/wzpY\OTC_&Wmj!:#OtI,#>ݑQR%;E~gUxԇ}{e]E9×Än*V-JfY88fk8Ǿ%ݐP0"NA߾^kS5!ʪXz2$
!
%]*H|r~Ӻi!@d/(/5%D/hv܅@:elҢh}jgH%<19iSsyC=C5y|ɇiØ䱘=9$Ry#
3誧k xB T<1feHcr?")KↃ>9LujUK#dJw,/ <RDȢu{R>'⬊%j|<8UGsVCM~e#£uߗ"'><ua;ʐ3'[/S&({D7>xi%RRD&4ũ%ޅ<aJ;܈6m ~ =EZ_T~ܺNB:#O|M' UP}:f ODZ]'V'ږƞ5Vb#{#<EixJfB<W9x *(ӚȻ/̙iU s2U) <tжQ'6&}y3 ~ڣ{_N]xׇk
6eYRς9# OB$7lr.f)y#V'}jcZ5i"c~w=y~5* Zv
v#U<XrjEKQ9.sb1GmmwD0=qȂ'\g{h:MfV09= tۻH5p<EI#ۛ!X2=Q5AHS娛ƻO0wMzIuڗ躇H!^>J7)/f%.z>chwrm7:Aj4t5 `=q9<V!'y 1"' (/xb܇;c힘vxb5<-Ey1䢧{)\ ESO(rOT;x" @h&D'Ҹ Do)ʋ枸ȿHjOt;x" @0x}OrQ R]zb+YbO4O' (/:lzzB{u^ E
O<9chBhB\ E*O9cwDJ5<-EyEOlyOQYe(+7<lЬ(U#
}iMYDa
O '!뉡)Ps\1w{7-ԓZfb D zbM5xa47n_c*D_?Ф7 Ds/}'ʁGgSoR?ޜ^cx_dLOtFM
l/O!&o2M\'2Ms=+߭3F# yX.'ڜ~FwbO4f\*Sw&2U cL/z6U26.Otfȹ+m߭F/Sى"ݔ۹L~j_cAYq*]`۪*)*{XY|"s;c[0LOYj`O`z|wqUu0}o.Nxzխ!tYjVFyMzu[W: 5OV&ޞxnM]n&+5G}UC<.`opS>%q/b pثA)o_6l,}N}". OHFbFfs~`_~aUnֹ7n
5o=ELڄ绒ޖIyBY*P@xxybP4m2fT-)hg?.ёiǪ#?dKm̈/<<q9a e<!w'#~MжOܧVlMJ'vZR6}\8{/j7Ot^. 'Ĺ&=kgOĤ0iۚ<gh`}גצ]<O.9 6'py2/Ԍ=ӆGӅ?m_'
|ri* xAF/pDHhDq}'KwO<(yoV(.zdEUw]]fO|Mcu˥<1Ya ߷EvOꉆFT'٣=gef_T90D1ǯ>8wfZ]<ѸNz<!s'zfLSl=|<\<LEYūQ'YV.1V\.h( 'DpGӊK915a}ISot|уmv6W'Qe5<1i `rKQ^Dn8#Zj?rq)RMRrb~cM쨩A퉣"TS,'/ Ax8yuB'|\> cټB*se E+?_ h 8=&~Poq:Af"USrM5ݙ# <\<Q3N
OO'Q-e8Dՙ'Dk{I{Wczq lQOxK2S='TZew^=22/|3O6_ӱOy& 0# <<q9[hJ;?{a(n<i#E"x\3wӿxr.M (/"{ ':l@g_OUJvNo3â5M4sUH-M (/{xy\bY>7~eJvO*S:~A%}4#=1ِC o)ʋ;)pI,ޞP9|*%=>T&yY856a(/xx-Ds<~jO65S،ٞ6}M(mvC HE,O=Ĥ~kꣅ'Ts-j,ئ_)6}%wPrEg'&' E,ODQ{Z0={Ãs%Jvt0Vd)50R[16am\O=ٚB
D\@٨@/Iߕp654 Ͷ\B'hNяb<Q;O
+]~Br:A6a@X:t=鉚(b/|qtrt!ܲu%<)8;Em4 㖢 c-ې-az*vz?-5rPS%1hV< -EyGڒ<Oݜg`2'Zn B}s]KgMs=M n)ʋp< SܝV-%?%廹*~)' x=#d<OđS9cVS`Uas4c''Y/ ["OnD5wnrZ==Uꌙn췋 l}KQ^ <x O*yOFk=6!fb4 x<% E>x%#e{493"' Hgݼ<XhH99?M6;9M'4']aa=: p(/r 'f)}'CuTuYA9郜'Fv-%'ڌ Rz}3" -M@guk]a!=D^ z{G<
fRKEkOFJia'/7 x(/r 'o<Q1Gߟ+א鋱5#$P?|i1v@x=Ę'T#wcڰ*{S-HPS
֧K{rjc ["OxK72.91I>O<)WX(O<q n)ʋ|<:cPm0|8oK,$=1r:%O n)ʋ<9㉖@\_-J6@vGʭ1 PRyqXPsYrjT{r%0/QOkDG| EcC9O&w^ld:ZOp ["OO<Qn*9OۺAW0P&8G *W ͞Z mx|'B%=QcK??ZɮY>PfS{ <_Ы=B[4<Նk<<A<* 5Z%M6
lx o)]|.. E"N9ŬV.yYdЭF- -Żo^<IzBZ;E`_MƩ=[' - @uKz+PmϜxRnhIfZEnR? E"lQO"CWÐfĜ
t[@mv n)ʋd<a<0//hzBf>JfT4Ե1;ў]k&(Q `(/nYxa|H
YO40iojk(G\X9Eoh [")OXx]H~,vZmxDWXhOe(/uxPlgӆQleEx^x* ["1Oʥ9bOOM< { ' Z~LJuՂvKL{Bw@{KQ^$ OPU'3m0WG,2=
ѱx* ["AOxBQջ=QY<>6Fo3氢zB@< -Żj'TcjWr}`\n_/8g|MFб]1 q=;:A@}KzOxY3ܯfgҞPهwT~ީ4S<{}@Oh1 (o)]/q4FxBfZRyyRb/Pr'b{B{t,j n)]/rR#F3PͬB{g1<d`&ub{Bl E0A:y{¸&k̋ ܪ,Pp*'te2< -Ey'x=_y<u&7=<}FèE@Q8#^a<1hx* E0AD!;"l,yOGo9]%}9ݖ'+,'[>T .n)ʋ=AeR{/y ZO ^Wɮ]+`srjOhcPR{x^>7'ɣ 婥J?ӬWX<O貟e0(/
DO<g7#CT UjVB5 < MA7/ ('x={`!<Ѩ%wd;h2}^qe'O<-Ż%W= Ck!<BA윶2A--EyQO bA<qTȆ(|5;i䖢('̋H߰EAgmSKцs:oCS.ZS_j R ;QZƲOٷ#7}3M¶awbMj/[C O
05)D1'0h-q2x7%{r'Gb_6 ߷EsİqiƁ;
Hk`2Lt"?d9OhEeuKQ^T- iTN˗Td?/=섃#Jp8 _E<ekd/OAzќZ=UXrҍU2ԲxgiOh=(r[3 ~˱xCNF9XGr}^m!EO Cy@O>AaL
䠢^H{("sZD,Fڋ zB; AA /Gڂ4},:ze+vMe=˶a oXGRsfC~T%w(Zxe?=+g>W ,Eiݺ;,z扎~9̉Q(u凮`hvO$;xTUQݳ yYgO($g59G] y<!jϏ;qYgziIU'A)VW'q.#]нvX ZQ~LQSJ2yNnϜ2Miݔ9vUɺ@WX H؋Tw)篇W,b~z/Fǿz4%
:̐|숵!IG7X x.9xU1{OMY큗&w,(SvzGQCk*~]`QCǕkc{OO%@KB+xVg'jEXkSDꙚU}-ؿKQ L2"TÎؚ̉ܛ:K!&c(fmc>hd?ah4VlofI.D42? RK<Sޯ̼UrjBskwBԩؙ%E{sEn|w0zR8u(kyc^G ls<5^0_f>w/+o1z8؞ژ[43#zr4i֚}N`#`qty /WI{P6]f0XUu][{wWHMCSZz'?vX*&o&+/^:ޠi IW&R'4.<B^`lϋu~bYQ/LXPgV]& Y<v0<=aȕ(88MY?wA_0S&b(7A@^[~o6+p~:4;M}2G_ duz O kZzw+)Nn$g-^_,iEgxX'>6zGelxaہ?|u}J boq4ȶo|Dy)1G7|H&^\[Ok R牏یMUWF(stN|J&hf?\ zk mu(٧'QbϿcWrkDr ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `bݞ:^B 5{b(vo从] @avroZ~+ (7\ib}N% pYp8 Dfx h6\VӨ{l*O ՆR.N (6\J* p%v;x YmlQp~I~< .6\sF}O Ii/< |V.V<e YsE.#< lV.s^[x ج=\Df < l(\6? ea p ze O @ &\;x p5ᲂ' .?Xx \K(' ˕eͯ' ͕rO @#\v;x pr U @\Cw
e' >' ɇ1 0< $.v軗 |vOیPf O.pe ;:v&^w^ To;NBQS Ot;_/+v1W|gguPgW: `Ş?v;)Oto =1.˚+5X\Lً¬rD Xؽ2W>VӁTBB> b[ר^eo\_Z^-qo `@E6O*ݕJFs/eJ <3M_>-'2)uߡ(i^ǪI\_NyjJhp-<1=ioW^7PSdOyT/MXEK]u0-(k,<Ѽ}̼;n Ă#P`TW WEć&L-ދU(#S~OWyEk RO(,fx/ag3*26lGf_kUѐfv~|"]8SVhdXd 9HN(#_Z}hOkrQ0LsqףyFS7xi-E@Ziv1efq=ɬY2[eEuta!\!7dԡo( Dҫjb&S)9!'_q+.i(85zr@Q"~--
h?N]5(3换ên̨F>ªȏAWg[ d >bB?>>1D-0["+UUgUuun&F:wjȲmWDUQ+[ t 8ĦV{B }R`燺SU\{vnUHOJ9cI"yW0'aL.V7>{0<~67fǶT+uIM EM)"K- @:P=Q'
J@țdž}Xi%A[u34))n`P^= CɈoo~Z'/ץ|!O̎j6U^!
8Jǩɰ4\BL#.gv/e]DOr)%j.3#m+͊c}K-rS={ riha{T-ƷO{KRg=1?3FV;GQWCm>;^854yW 9Lc6M{8W≠OowJgW/\Żci,HX"'Fs뫭!W*C{溾T6'cs{P~4rE˅k8 =<7N)ePBrxBս T7Vc\Nɵ{/%^Q A]SP\0Uɥh5sO|Q@UU7®±cH^ `ᬣg6!5LcP{'^ý5 hP_;Ǹ e;aOuȕ'4>A* u8k&La,eĬU{B $6`:y'h< X''0Xlw5{"&T0^Ͱ>|ٶsQs9uu<al<7V6Թ{BP%](.n-xBSz!ݒ*TA<q4ӏnouuSֿ<(ێ>e$),`<f59&^'Ԛ,"4C~;B';@xgMeP~KWwVOya1xG<yb4d
IPiDcdZ=Q;P:s'3OřX42As6yWKemeĐh˶xsY8 $3ҨD;:=DA=a<V/!Oh$SB'vqSx4zUzB]j
͌Nm}=a93S.4wfa657Upp5PG{8v^D [ȊC@p={t>d0r8F"U8OX'oOrfI"@{zr67I=_':꩞Cm=aCI4$yP&?FY95+Ds⾳C˶0lvl$8 $-Nja>>OIlq}f|o;>+oD
/#;4{ydC$M#tw(({xʜ)_ ] sPmkE.+
PUxYx#≳B( O糄bn',|O zP{q5
5x_lBY)!OdSfd>RJf X[uF .*{^=<y~'ij.sϻX ]+#C5WfLg_Z嚲mK( q^kw0Gf<˥9}}8̒Kꭃ!yY,<.GͷPDa*k&v^SQs'*AO/i@H\"H;-<t|Ҵ>b".O뽯Ҟ8^Ta=obja AIA+Bͫe=q1vonV'ðTosIJҏ+"Uy"L˶+D"X 1=xUm1w%0l WdȥyPt[FbO̼>+>\<QȞ(KD$=ѩr-ۮ2c'$nhƧj{EcHz⠜
E.ۮ2C5?培6GOL8CQڗR#D1/#̒Ы[>`8)-u- z>8Aj0']k<+0'<1YoNE},Nf# 9vvU57yW\P8Z] 1;2)Gd6F݀,F R[mu C17izMhjy꩙Nv?BRj1#l+JgZNO'j\kx%5ƲǷBW\z[jm-=jǮQrq˶?{h <9r \Kt^G:(2E}6=R_UAwC$<QDjF᧖K&\!ƂtFKL!x6 jR)<Ikۣ'p5Wi3D}2Ɯ6TkԱ|l칉V&CKcE<IPeLwOѮQGmzPu5x?o4z4pOʯU<Qk=Xkj$2[ wObg|amFqоѪRwcw9 쯣]'BD%^З'8C{‱$~fv_!|??ᣭڷL+Q['OUe.,:!OJDM/O<糙Z[X9}[[uosC[Sˎ37,}g$ >ӄ=c艗%VyB+aeayHlugP[kc>?v6t3#١؍Ov4M':vxȓ'CNz!O:DK..Ϙ&%GE*z{0,T'px%ɻMWc1hcRJbG`8!O:+r"yWAZ DC1!yW<J$(-MNڇ8e[OO2Ӊ=)'p9^'Hch<ybD;u,y <Bv?1sȓWs{QI; x"0xrmS V.hNCp|o(`RiN}0c* A (3|]9!Ot18 <B;ky-ۺ{B?`qHx", #c }ms<L'Ҧ 9!Ob8#K'sC<Qgb8PHW':DXH%L7}'Ot},|M DX*r'͌ FKWy!O u$ ƢwmҼ˓cnD^uIC@aIo㐧8VU`:ٟ[du. ''cwr.(K`#$f̩Xb/Zq* 9!ORs-LMjfLq-:DX9|V8 $<=qpyR{[Uڽ^pHx",i{<vaosı)!O e=b\{❡CWj泌[!O e$}9!O6O|Ec<'Ҥۆ= <''\˶Kzp]C@a{b3<-}&Pbi,Hx",~꿻ˆ`szcl\s>!O Y~YIJZSfDBk4
<+O88/}]rȽz<T'Sj=3jsCDW~!O U${p7/8i1OaKcځ'_.eۥ<j<!P
<QjTʁ'B][;K'`M`)l,P]U&!O`˅/7vX結'pMJ6X7Dh/xz».'M`ee<$8 x"8FgcpGS]':&Q Ol`,LÔmD)/!O Etɕ/z-%<qKsYr* hwP5PJů0<-JpHx"<ڽ+i7C e%<qz,OG2_f<<-=Z-@8hOJgr5ue[ shhO5~[aGbN 9tI;k{E8HN DۛW
ѱlsStO-}C7ǪX)Dꄶdcgq>8fJ,O`&VwY# Daʵ =&AVJ؞,쿡c\Hq(Vǚ<5PI%^\yOġ\tEˉIsC"{ByiOA46rȆ%ž#~SdO$XO:'"Ն cgCzbtİb|8<DbyIOb EI!˶Q=!(jaV <1[fS"Cy:h<'Q<t|(;y}pr shhuh}G觩 3v.D/&!O`X`m{y(uEH8 $<cSɉ]p%{SDOdǟ[
<Q{xGpѲmDOci,Hx"&Sk$n,|S<O*uNo 8shh<JoNe{Gy
ԭX>:Q?*XxKN4P._7mX:wI#?5AMxC:Keq)DDtR+9 $Ddt\E j \`hy<\{@"iSR8qPHML> XDtJ(&a|:d7G#6"y|so
D|E=4=NAΎĶt<q>
vM0 Ϩ=i7v&k/"X iMVtAD-
.0"ؙ]Hߵo;zn7gv`XD;RMbMNwBgMta7\6<
xbLȼtC#EfE@}2UE'$]ᜟ.5*FU{u)~&JaY$xXRQm2U[8(w5϶/$<O,FeEVޭ:ڄYj;J"}Zd44(z'v9oH&#oexIiݏxbAQ}COC.adlރaO I O,h*fhϙ4UIԖJĽa&\Y kX6b?WtާDʍI*F{wYI
X#EdkŠLήCJ6{($8 xbq|G$U4s9}tvº'<
9y<yLQuyĘ̖YKCSa_"MR^
0EL7UA8VCڶE3^>~7w~S7Fݛ%{-
:7EF$ݲϯyHwkI*&`06Gkgx #ĊJIŁ'.[ @<*Z<xbuGFPc/ ,0 X-}[uYQ, ;yAN`= * 8
/
IENDB``!R /GT{T~M ` d xڥTkA~?vfd)-ECVT)b[OiaiIY""'OŃBK"Rrɿ@=L!|}AHkp`rJSEHv[+x2.KS
]Eh7V*jpw< aPEɐQk9z4?6ҢQ
m5ۧ3wv\ =O65
ڦ6'jeqjE
UJ^w=I-~]OWR>~H:ſm|q=
~|2Hx1cj{SWo)q:]ϟ\\YZ}8FXL|z|~?d>n_z|]Ke?g\M䅅yH_oՋ@[gy9~yHf!SPV Q@G%Shr'@>kf<4O'$bF͝>o;:?K`։@=H !S^/V~ÙӜ= ;> C xOlTEgv_KڂC
Ժ@ mc\R(=c-FI%Tڍ1ƛzh{PS{Cm/8v'1鼷;5̛?7r؛,upƦ50Vv8~W2sC9E 2=V=ɡ.EД&րuvQz^~D.ZB#,ވyV`0mM՝ם+{אϭfckѨc`yt|XHղvZ9Gq7kзAqm@=b6t+<6:f<r^.ҿ}B_%Fܟs\[%ByҕPow$2t|́ogOF6OcTtsgp㱎1KAeB '\Jü|)5zkҷN+qp9~ejL8-xw,iaO+{̝B{dNja,6qEn*OýZπ%9?__z/e1dy~&1\Le-av6Б>fgejTkEVr<|[%x/ƚE@/>ٍk1^1ŋ9 eU/;Sbj*^\xNjROj$⼈8Q妙!`Ufktbn"z*VtwZdx_Geq?* `Fu8 e,f+؋h℩QK-RkEKFL*!WrHWPW'4:d
#]'$§`SY:-v^CK:~Q?4ϊjo-\!-O2|ᣲ=V|Z|:\y1ς]UƝ͋`V9sM~Xc=vYa25V̐]tw:r{Բ筛Ρ.k4uXSBBS]xxfSQ8uJXq`5 {.YkbV/ڞbVc5M̊Y!~UX;OEt\{6wz9z:#hlذ2TNSzu25:3v2NjgX>cg>|^</ryi`o0slBc*K7^];3swjh54и~lih54иƫlQǘ39ƜԌ}g(~-}x.7{x4+c@m@k8r#LJN}߿>.>|':7-^mj]x EYѧ\f*4 #oǢF)CG7?zZʛ|afO--b-|,DޔbP|dd-t{1"pY{ENqȕgZʚ`|`>Vئ}ti/i?w)U?m jZʛjRi܇OiO1aIE^Z I%?:Hqŧ3>|Jl6[DiçT7>Xiw:nlT7ll?Y`^ǍI)oZy{<)mtPa`ӭ
ی6:WFuO[=cl{kj{cS!nT&_l{#+{!>ATiOKѧR|+W=ʑ\dS<ꐭNdkRؚ<ؚIdkS<ڐMdT:=:SdVغ=غ[dQz<zGdQF<FmDdS<ƐmLd{MCyl
w5>DfFmm~WH{Fl\e'3m}[?T~G\m5;7"/3l n( vel^o&9PNG
IHDR PLTE ̙3f ffff f333 f̈ ݻwwwUUUDDD"""O_G bKGD H cmPPJCmp0712 H s IDATx^흋&ǻz8v<NP}N=EꗗxG'mp]u24)=GOi|=GU&m?d
m/#qF-eg]]Σ𩗼bsw1=u*mHK|1'*TiZݟIW|:2=K?=LۥjL1_/<>]Oߍ:vPr|?ދ>x5NJ8_T!q/M}OQ۫+]WnAxy;D
U\k;~Uv|z}۸Q!"=//ߎOC|yw'P00^WaQ}7oq|
{$(R10GOQ@}e5|?_WK(TjM{w"p3Pq:4h`:\M7EiY0WiLQ?+x˫^;pASSz
OHEJ~x?]7I|&qM`(a{:uӅsvOYǾMig=G U.;ՀwߤcׯЊ{)ҧ>\9ԗ.:;Ǭ^|'yFݫy9C%铦yyp cG]&B}E? IDAT/sԩNFCe y1w-e:Qm885+y3oN\[);Qك&pĢl<U(
QYk9\?XP[ym6tG@!+'- #*J[KL@ŧWrԩ&!u~ׯ?GE#9T<K[{m1;-*z}սѻ=UC̷ja+>1h^>@CRcDƎ_UV! 9X㕏QzE\ޅ;C;(\+i;vڕ;t>Az`WFqߕɶʪl}@cg'txϾ+d9ɓJuHO-[y~6bL*d)YF>gėsHu}26 մ4ش7q.5yjV:m4Əy'ޓ0b[ys!dЧ.!9z}"=k㔵txk
$p2%oA˿OCNUЧS$Wd 9 5C(F3|E?E4Owg)u6_y@` 4|Ԧf:=G"&Tǧ^Oh٥)ky>5nUa{:[IU{Կ_>2ߟ: sdTWNaW+'&8Qg)Կޚ0 vzR|&43y6#<*@D5xvI1z磭U͟ w⡑挿xxָځ3OyxHMauro>Crz7C~-ky v媵r8XjE2W^>y+hCy]M.zHc O50=/SwAˏ&%p&OKP X\.0"s-<ScI9j'1dG&n< IDATd{!m#=Z,k5bk'u"O}b=G˹}1sy{PHp؞Nܾ9=(8lQ'rn_,_Nm,v>a%ɼ^0F
Yly<b_f.$ZBaaEy^w'<$#UXod7ex}Ŷy0z{k_y1Oo7 N5t'7Oj=G+wIsyoJ=G+wIsyoJ=G+wIsyoJ=G+w.v9^t!5<̭g1Iǧ&OR'fr=IѴY6Vѕyci1'1EDCXiRޭϋ`zg_nyM qAuv\Z36=a+Ta{: my6sl4aqsIxɦkk)r稓M[XHzal)Z~>bۧV>3/=
ʧ]\S<-^afrH-m6giyZvM<T[agf93O/\L<]h+m;`@C-N\f3nl!OCh<dAT[HY <U3;P-!<ޜ&|Hu~2>Ĕrm[t/v[y# dmWXiMü~A-N)G=dNՒf2z5!Y2x1*a{:w]<$MaqFsIb$AnM
r!OK֯faCs9bc$5O-Q8yϡ稳ɉ2oRlD稳#XZ> uۧKm52e@4
OWCۻ_T9eOtYYJT<`6_ц IDAT!
*凣</SaJ٨kYf+O,RMٺ-y>A>LO|?$ 35ǷWvB[+'`A7Mti-FlfiVƟ)泚%&#OdzK<ޭ6qQ]Ӯ(97p>YiG<7rstů$5\<9lc4GsMEe%l%OQ<9ޗ8qDʓ&OjIC'-[YϮW γ^"nLd&>)C[
Yc{2Ch4:2Ld(?~#e$gJӌF&t7|
r3QZ&Q>S}ghY"s$I0:2C6Mxs'Dcϒ~(SX,ݿE.N!gB?5fݮ!3cbr}M9pR?a4o)J?GۆjGZۦĂ[:"ײqXomfzyGg9SO}DC7)Oꃕg8
<$* (<0Ad~y|K9~.t[Hzav8Y[ϪםU.>'G|;t}<|-[|yg4sd˳+WdP)p#=gpq-ba.nTTI#6VqI\:Ɵ@-܅spnn=QCƭmy&hm s 5?Cz5ꊘI5T}eR>̻W}>-[[?l
<5xaktFQ<-}v?}FY'7<ۀQ}uq'3)<_%hi/póhϪ}96 IDATpij(9lB!_a{:xv
i<@9lQ''˝uyp ubyF<}T(RCT5ۏҪdRL 7MHe{%S,d?CSy<x锷lI쁙2w_&^3yj@ xTmm'P.Yt2OГ>o̊ۤUͮ<:gմEp`uʫ'5}pyCwW8]tUZ⨳ؚ=G Jnu.%#Qa<+G5_a$J
eSH4 r_<k\:/ϥz Ϣ@9Qgljd@Y}XvLN<1:Fy81%zς@P&6#扐(xsǿK0w?Qff 3s3'o8%zϼ@K[P'&LᔁneB2Yh#\.Őڧh.t>3DdW\3cs<dL7)%~)
س<|vY^8~/̙
ʼn8v}yT%հh5<MJ[%EEe5ót&{v>s?U]YxjqflFW'|itSYg{Ru~>i]$xޱݼJMqedf.3;bjY :gD3-ye`7?}&хai~3y~I5=cZ8ƼqqP=gQ@<3LL?~5♤A
LZ3&$0*B,E:gf*jݍ62XhjvqQnΥy)F<݃Pc7l8g;KP~E 98&ڿM53%Y IDATuej}xg}_{pt eYg*č!1Ж < Apk"fL8NYT_:,jEqxƄə0t(koyS̅E@xbi
p0I(O<yzg~K#P6pu
/Q(q#,EiJϳfp<[RlG Wv~m]&,ILg[>h2?2'trg8(eb~9O'yXd<hW!R$_e*38:cn
2}e)yF.HD<hyOK =l9EHq&{QP47OcNK.mQgB(<imO{hf; 5B31r f_0dl
6FPm^9,B I!γmg
ȥt' (9 &'VY ;Ps9),IIs̯nmn$aP*ǡ%:9rI#W
I+ a{:G.E]<ia{:'âbYt6䡙㩅e<=,}t}F F\4#~A\C̓khEym<dO/m'NnٮH4ϓw!Own}h~˓۩Eixӌx'@Sx(tqRn=GNނX)3 "syO? Z9s:>{Z9#{WWN@<g|dE쫟QۑxΥy:ԯ4F<)A-vr0<O`dRZK49[Ǐczq4 y^@38Y!N_uBM
˓@<mJz IDATIꉕ
y^G~<b hszPn>0GHZ<ЃQ_BXЧ_
x^L.!#kXx6{b!QPr(桘$bE5<yJ)l\l3x*Q+ 'rQXkavK
?]cs=T\B>yאy,Od9q1|>c筪W+q&UfSwr]
g8ݰi+Yz1+2ӆau<aY GU<O ?2Di{iWv̮v]w◴eafbHST<?H. fk1y*4<5$ip1-&v^<K)MK3ไD3<#;HA#+g՞f*cֲT0=MNKHO+RM/w?M(Kֻ9
jӭtIH &O$M}F<vu}ڠń%ܲɞz%Ա~)?q
<8O%yBaj?{ pӽ._tfv,pYi)ݞx^'Q\BdR.K+M%4ďv9xXZii*yx^jyf`fhjwx˵CƜb-]J Ϧ ;8<pklhti}.s]M6f%)L ͬUÕD{U<3,}Y:Y9YKl#7,js`[<,iĸh-y6=<,iִݭgz./܈d/Fotݼ 1?5ѐ?<'9ݻ,,F>݁gɺ0͜ I'jZaIM jra}#,v`8mZ IDATjltge&'tm4ԨOcO2f 3/<O2;* JCiVYwÓq<O(϶jr}9D9YQ!zմxȻNLqѓIJLHӚTn%Nx_rۗ'4X]4`EN}prz!Ok&><E&Ro~t/~z.Ϟ٩Md".7yZԭ F3k+L9w;Γr0z-ONbpEtaV3)n-u!bgX.$ۗYgV*axV3\>WJl9LSV`i+C<i<*S736Ǚ;#4g;{>T$I1g(R&
2JxfIh lb<8aͺe''}`Z3~t0p9OQJ7kSqZhϒxZ8iy9ݫqS.D<$Ҧ|<G⢇]3+M:&e9 )#$V@ҤݺJOF}< fZ<;7<ӂq Y,n#}X6,ŻIJYӛY1N6qъ8]~я4gs\ Ok *tŴ<AtɳM4?ѲϘbݲli[obēCn,OXz"F8ǻF5.M{-'O]Q1-7B1eνv'݀0Lu/ɳ`XTYӦKByg?uυS>{Ix 6^m9gm0\8Mw67gn,ES_Cഁ7J&!υ.$k[kDt;sўAj*wp©&Oka$O(Ϥ$\<pI 3=N`x«jVЧpa\ N}R4k IDAT{xN^8>H$N AzE-a.Ey-s{1Rw^@ȻDnl?噀E-tT43?VF]t0U>ӸPn+x<|^pSEKyT^ESڝ#xB7kQj<'a<E/ywrkyy<_5)~&Ǟcn
j5w{'Y3-ЪxN'Jͳ*Zmf>Ee p8m8t>G0QjB[C2SS6legL+QoE3 AaϢ?Gx+ .)M~mk[%1wBF=<'Xg63U Ziۓ>y>XI)b5y'"XޖF*>E;yW@Xs(NyHF\j^Mc! -ۂeys2gحв</y{@+t<2疘l*ߧxnzo8MT,;-X_ҮP3LpI94Roύ3ܪ<'8~#xnY&uSq&&Zk ؔr>tLϡ:O7\9OPXn=Bӻ$OJ'>w!ko12Z g2 |~WClX}ⒹyN7XO
| 7/Rqnm#9<)"59~|̍dmHTçԶc'6L3,7hw,xHVMOIj]lѦdQ3݂352!8zDQyq,CɓgDه3\@dg/ڿyޞ&h,guMgSC6\$Nn)yޝj}<a7z%M3bz IDAT"u#d-禩à4Z'E칬XcxyO~<ӌ{4M8ހbx`$zϜ6M"ګ<]B@%t~_ӆ~
B!>uxbfΏ洳Gy_)7Jj𗇈-l)q6o+,JE1ŐgdzA<.u쌽='-G:nR#z]*E3{`w`oVfmfPj[nަ}Ę"yf9FhBmirX-9\gyw[dSo}nSO0Jɧ(DcIvٓ4dJ2a-6zC}efV]W_f7[fo"MRaBlBh'ȟܨt[a.j2h6GʦT;Yarv *0nYWj}GnQVChiUy>k4NyR]-#+uK.v8RR]-#eFp%%nkR?im;!d$^<,ryyM#k6?w1"WBMZ&jꧭ[YSwmXVizYڴv2Ef]in`A&l5cݑ2<~,DwX]1
cZaZ۶sv0^J|\ vݛ-[炀ZԼ>S{E>[m=F{矎|j9I!pjIU6Ax/'v?3;<q;w^Rgjֺ?t6E46KksO\͛Q i
<-d779WC$'=QTBk[f@%f=҄yҨ}33|] 1թw|Ke]϶S
_ aIDAT"Yv3&a%W^W"6mYa=6-r*g;䴧imlllllllll`-:3K IENDB` n owEʤ7rPNG
IHDR t 8 bKg gAMA pHYsN 'IDATxY{XSW7!@HH yʣJA(EMes۫_muFCnr[Sۯ:
QQDPQ $BBx9'9\g}w|9묵:z$ ?_ځ_:ݨSaebq_W)tl~T*'V{L/8v`.%^^w1rpI8
Ϝ\.w>Q\F#233e2L&JO0X^^ޖ-[YTT8'$S#IҋF{MBaIRRӃ5bblo|֓8AAoo/ u988xP\\hѢGf|`x|_ϟ8V]I':;ߔn9p\hvSYI6[>"] ZI^/IbmTԂºK la#33K;;ufB(R=(1.MOp:_dɒnVZY30pܹz *++\K$ISS ࣏>H$ y敖1LL*--ݸqc~~~II{(LVTTk.DPٳAn*tF P*R;RY9bi4_ DΎg]z(;ۏdQ(||lܹiP>&nXljk%%mv6ܹsժU.X,vŊܹ
G\.;w.$In߾]j2
*j5Iaرc8[cppox$IGƫ]ꫲ'NXZ%O߾V+Ig{{ו[[ot$Iݘrׯ_{{2hxx KMMEQ ^EEE{]fb)// <$q(ZPP
/_`? g7^˷;w i'I/=|Dg6jjEZ߽zݫW"#6xK1*^b*(((((8x`nnnkkV$Y, @aaZ- NS뎎X>7_NAw} nh{4~uc#LUUjg|Q?k_FbAa 4I 6MB<-+d˗/GQ K.bL666v/AE___JJ
---::zŊWLwY!!O^=w/ `uuCfBICF9::n
Ti 6;A 7cBijy܈ L U}}oNM]*xWo""(rWKj iQQQ|h TVV.^`0vnڴiܹ7n\zuyyy___{{mےRSS3338#
~Z0 455Ǘ[N$nFEEAA46Fxݩ<ǧ^PKLl=Kx /{|w5j#0`0^z|xkttjݒpWHaa! @ќ?>>> OOOoooFRRҵktK/痓r nllq|qqq)))BP**JE|M???:rkD2sʕGihhZ~hXXXdd[b#6{_^:&) >UF#E sWj))^^t:Úth9!A`{{9N51Bȏr}uz`v--Al4r!TL
wyy'OrԂ<ިJE2նU;q q q][V9:j}.u /9m>x2tn uN.w11 Dp 7MMMB'&&{㹹3yg~aӘXvԬ.JK A_w5LN&&_(-(a`%4fw8})曩â07#N̋L
e¯`˖-*?qe` I(LL.χVЛ+*~Z|LklL51$liq8.^Q["Ҳ&:F*+Q0[(]QT^Pݍar乾BxX%+4$28İ8>?ًFK
B`\Y"3ۇegWu+A4jq|~@CQO>S+W8> _>sfՉ/sJR)E<'z?AOIh*b(/ݾAbQdm_&sܹn$Њfy!g2wuyP( 7jj/EaxUdI:Iٳvchhl~9.dW]cc\;:'9 i7y$S=~zK;bddX 8յdkbbfHϝnsSeeDrQV^^(@6Ȉ hbQ܈d jb⛾::f3AlR(N;\˰cݤ0D2L=%GuuBC
dbX,$F.S(BBh(J=66-!BիTh&Saj`uK16F8!N' <:XnΞMeN٦'4d$JQ*nӹb>V+ ul@bs8aa1>>e
EV:*`VJ
ʍb//'I^[,/Μ CЧ--8{v^?pvnDD4ĸX*l`d{b.C0 Aݧ>2RӣZ+55wߕy=9X ӧfNj[7Owwb8wǏl4ZPx֭q
$3+LvM]20
qMsy+m1iD(, 'ꇣ]cQ(vcӜ9S BPyOVm(mm:;&$˟7 @$A\.
9r}ppw]ݞe a3kT'$3Ϝi]+$:yMpCf:RByÆ8o:a%}dw:wbTbIa`A0=(CY (Lq!}5ck ɔ$I6h$-gP?uGqjͨ~|'EWGE}|/>K<";HҝU|xa*MIc!.nތS'&f %î0o5=<NT,>TmoWML (>UmHgi䋧^Gk?=E$wvU_OǰqqTӵl6Af96p:ߨ,' ͜Ml媉 .5\wMttUoow!HZ``EB-?sZoSx*䒤s"cK^u>b8H2߂mmM AǝNWAJJJ@Γ
?ťjVEFqh`-wfCa8+4cd^XJ>mi `BE8YQ>>>PXI*uݏю #G>%|$`ZѸ/#cǰ٬7 0N/ H Wa _ɍ{0I1@?Cqh4 l>R ߩlAA+A PQUk2Z 6[51Aǰ%jǒ똜j+` YJ99[[f /[fw8JdYlѪևǍ.s^^ 6r48@s1i$F6:"*PN㔋cĉSqR^5؉8jC%a5HBAHFshΞ_GK#uo}PMM,>d+ݹs6[\D%4g֤-/4kNgf\c==Svܭȹ3t@=_! FY 07n@8'+o|V`T]xӧLiio'&>b O_X|~DSuoW\s:L5O}cRMBt8I)fɒee\ ĉDccX&~jK`Z"DjL;hsK6G\7w9 BE@N 8OYail=G'~kLj%Wf2a 0lob9hrUb1aIS.?2*j&&fkk8zo_\C55 `# w0>==>=IŊ
+..?n˲&ǃ!7A,!vs>" A ' i":p\8z6{lwb</pr[[>pF "]R-bΆ%{T|n0aN5
̓rs|/OI)PWi43"|=`M+gSJM :`F(q\rP˫PpS~+Η|y 1<uտ@#:}t#t p ]~)zCq?\כqX6|u[ℜ"bb $BęZ$_,.F,{vxXgMtpirY$ub9g6.)OL|'_|"8?$WHn(ξS0> 0B ,3|;4uSI2og!F ΛY.g]EZkׇL"ZX^RBN5>n|
B(⦯t,8o6k6[~g plC:53A,6NL fN.:8>[RV${Ehl. `(toeBLwPF~Nؼx2}
&U|k:np t0RmlIIb8 $UI$$EmE2ٰM4A`4;kX(#o敋EsLh0/C& C2EY霁}z^ @#А#0l\5'gMj*獿K@__JER$ݡgY6;!as8ۗTrs̓Gq'>FUU_ri#Ngv{rn1}3FL pAMKF,b\.$C<ysDgt-/}R%&64r_7lXPki02RVc.V(ϿO&($ Yw+SUUr&B ܀˲,<qj#0,,wߙ=?^ZeeF3FfgjYT+-vl̴&I:5r/'z}qRқkyFs&&^.b}8g6kiY\+[3gWW$ e?zî-۫{veRR<y8Hg|jK͋VTpzZOzҵSh[m'NKOOQ99?/,pqt |%K*Hñ R234}Hu8~А 2:MAh#Gk]91-˗9[L?Zh|&??@UZ=~TL32^zAXP)W(u__c==4=c>߶'@RRFZM
@
*.n<lyh4MG4d<8
'
ERye|a͙`TKEo8fnv`2CYJ
'Eҥmmz-0APSbQS~k]jeY60)20:~hoڔ"隷-7ﴵ
j331f}0˲GhhO*UKX\{<rJ@Dq;4 ^,OIWQa#ۄiHh|&C*Ga9j0h_G|eG-ɏWQ]y=+.&.|+yΏ!BH@i{ pR JP&,:?FNa |p o=l'C_] @,X0a!Aff1xl46]."OW_
pxWc/WؠվV9L5'33g3ˁho]')HӋdA.b^B谇h%;499HX mm@{$#zTsrhܒn6-]ƍ8O4?`jޮ%Bx i'}-, ygH9F?Yc#ɏ^ݨ2|u|A(g]O<Y{옟QPOQjW+W.)ŀar)>6!.X dG/r ooL_=mMނ* @a_1 0RsB^rqtŦ& @:A%sŨ릦 Ж8v{~>;:"mzNXpo
&_b|"4r#SYaLZg!kߜy 'b3k9naL䍋c=> 8ߟ8t9hO'{8XS#$O!4bo(tHN`aǔc78Ar9¦, iR1_n3.x&%!L[l訙poӇ<fߍ6G?&QyBcw+n]sh5L--vB[7geUʉw:7/]pZ,<v:zy[L KTqY`3Ebh Dm{f aLZLjUVD=$IIő*b uME'),%*-[9A,v,*BIFEϧZ jmP!-+KVqncllji)jFJYP{JKTwD[QrIJ\aNga':#; IENDB`@= =SPC".Z9 T ٲ< $ xmhTWɌM:w~mRƴ~,ê,ۡDn(uZ1X*"Pea~ֵ-}s余fɻs9{{̍upqS@o /^ w ǐ'҃R8C5!&7M!=؎#xYR.Ghg{SaMq}՞d*5m]EE7;㹘:lݶ$Dc;ń
<|[Ki$ Y(} ;n/9|n':ʷհV_d'}^Y0$wO[8~yCsG71|O{J}`GM=t89^ʅ_D9ߛt2sq/A{a K:uJMs&c6vT~Y|H-}236}aGHR}j[{,HO~gJwJ9N31ݎ|_s_܉sy3gys'n}HƧ9\?;<Q<99ߜKͽXHgJv#2^ ]>4}d_&`Nn,3(J>FQy?4z4|^KQKb>_Y?M{H)cn#'6WKF:d!+U`٣|QYu8SpxUVoJ϶˶oiK"lvX}Cڐm]4>H)g.AEu-KҸӬuf}b덣U7& 7+N3?d+fO ML[6,k<3NRB~mZ{AP`~FAbk^fMʼoS>Sǎ8lOm6n aOᷴZeݾy wu[/oFWo#mԺ{eٓi]mlx֚a46 [/262/W.؍)IBDv#zԺqmذ~pm^=482zՏ}'0N'4^Dq`՛C<uN«'mnlH6 +mz.#\E2«HeW5NQ?ce?mG̻\.ckiנz ~@&W3NذI@'|짍yڌ}1N5^D\ߦuN«'mnl8^qm>VRȼ
T+o)iƫH_'rv!ޥuN«'mnlXwm>V\~jh8x5S?Ӯ4it^3@'>cѠ [Vδ{.?t-OM.
61ݮߍiʬypQcwv- 'Ҹ2-TBtZ+~csr?(CK Z)xmPrw7=(w3<3δV>m]7pNfw`jA6jv!Rݛ?Yזyկmax
? zCSw
zF3?-)AO交3ٳ&fKC).:?K/AiK?sO?#,C [JؿCٿ!K P~1?aXϽ|1unssJ;rdC[bSZ1M1HR_73 f& RL=|? s%^G|ѥB紆ql|oKҜYk'cJcpJ?]$W&@SOt=I=7\e_{b^ss&n^5Us[zoҧ+c|~fg,<oN92{#ub r^KXd-u&=oމs@=k8\s4gM4<QoӸu>o.<YPO)5e6XJHGO\ '0NM9jg~V>:1T^gNJӺś@= q )w=~5E K `
x[]lTEnE+@Q
ȋen?AhPh@c\ML*(i*i44QbBȓDJDm#/&q}! m>\vwlK{g3sf曝RBȻdr!i "aB:DB<4%dJ--D*#+y|.#!9YS%Oѹ9Y5DC>J VB
I`S7?IeHyuIV_7#d͵xhyx<tXDq8vj<;@C^A^Dd^̿V+cwGjag<,.W3A=ч:^;z,f\P%YGcg!끏Jy>n0/&b}2z(߶mne<=UoH{H/;]%VH>z>^zvfne!_BxG4yx/N;&`?NB HMy m.w/!#IBwZwK 2_Ǜ*>Mtx^;Ȑݵyc<&Vbkvc"CPO|L<%ҹx
Wk|*-W'eb||!dj
)ac)y9&F &EbbDcNŊwHw^0. 5o11_&eoӀ=Nkn#ޔ¼ӯfH!Tׯ*OZ c+BuJ/Gx4yH;5_=i>F=`\@kU= cWqM;Gb02.o{~F
of~`lE[_~O7Atx;{ 8|n(ʖYE}{;N>Lʫ{>fc}a#} ֚{)2V0nj.wE+שݭ/,pN=w)Mff7Cf\߀fk'<-=sJ_j|c6>>ʾsUkRq.ƅ?sBxNsWS㻂rsH\t.f\$r.RELs DiJDh{}6w.eނJXΧa6n.^ޜr^:Cmor9/o{XӛXoF'cTL 5y>mo缙IMoR#17nyFW/7m4!l1c;
8VO؟vDx۵o[ ]{Gހ08GAm?' {=ݶoۆc.~_p0~@`g2] fۚ
o1
ȟ2ǹeV`7"lg4!O0#qޭpv!iN?K۟
G^`p"S輤YGyk[kl{>˗[.qTv}߁~!"v`+/SL rgK]GKw rgK]Jwb]ie(Z;}lZXGE]GiCxi;t\Lp'O>ðrOO--
Zʽ-mIE[G[${ڈ2Oݫv/('hmKmiQ9>D]8emYmnd-k^D]5-ҖQe|ЖQ9>D]9emYmne-kcxc>hhu3-cYcV'fߕ6boX7{z%.qzYEۈmJՖQ9ڲem".qZWxhhX(memYE[@[ֲ68=ޘhhX(memGhHvL:/-hh[UEE-kK*ڒڒmim逵}@1ߑ{@ywf@?V{@=U x_B{mxJ* J 9
# xZMlEש4t@%-UfOlZB5HHP)mUTHBROm%"ȑKn849pZ
J̛M2ݝz)=yvg{{3n8c$<jrCiFd/6L;,$co@ݟz~d6{{˽`XN=ͶZ+dՇj;f+؋пbp4)vWܤK|8zfhKA x`Źݹb=\=33{ZB:z~3яo7z~g{gEd}cO1fc|:b]
1ǥ\NuYLcXi==Ƴ'a{WʐU*j0q{!"ؓ}0Y'hqlq0n*g "~LėgSJ--%fvByAlٯ<zAYӛy&y"`svi1S+c'X7Dr 2ς}vCYÇ BL~Xu}i,*Ipu*D?a.|c_({7Fڋ}oCf/obQ.(6lF}ce]"0fYҷ3OuqNa1>%R@!y9>5Oub;4y5yqA<4؇`ψgzAup9w4bNܫz!"eb.W+!숼/c&5Wa :bD_7Ŀ-(.`
ka?kf˺\+yjj&9<Gj8#s5;=Nhv(nfgP 6+A'4;cM-CbvQfM5#ϸ}ruɀ};Nw?=]ӹ!tS&ʞ=]ӹmӹ+{:YO➮@\u&巧sqOW t&و>}0$̚G}&!o;^ԇ<46ӄ>ۤyԇiBF'rKߒX߃uCJ^|7hi)^oוt>l[F2SRJn)Y0;'|UϕL;m$>}I61srs4n78yܘ6Q
Zs*={qm+ȭt1nu[݇l[G.Vn}ܛlۇQyƭM-#r$:O>?z<iV7Vr0nqjְk!KK<cm*ik)JznɵH]L{VָCp+̭qV|~ܖ|unʳg\l37G̭q+Vl?j,B[TmzxV?Ro@= Fcv˨@4W + 9 { xYoSG}52%q*QʡR!DJM@R.^*'7K=U nHͱz@ 3k$eS$^4y;f~ ;ؼ
/ O8`i {:H1ɻҵᰋиZB;zi!CJ"j[{P{&/hkH}B728tA56pf`^,i/+{>;⍽<]SX:}?#uwnoMF7ߩߓx_S>
"]fS` ګu&^ub3~#љJD<}]$/^8@cܖl{-?i!Գaۣ㚆쓆t"֘}Mb8,qvË.hUg+]q68}xvXqwg&:Sg]q8i>9:B|~qǟ)NY-<7Zby|ӵ\|15jjtL/Q~Kcim³fz1F0D?Z?t_7}_wSe^,DZwb1|jҔFy^ۏl|ϑ?m,"ц`Iˎ6v:p8/|֧^ZߩV<\<
ү35'`ֵ?eKHW%1oG>e ;mP}O2kf9!NUZgѱP
5Z"QA֟X;/Psz^/fn_/r~;#MO"gn~ˆE/\lxס_/r~;_ozlx{8[G'ygXn\Yg?i9{!L}l{|uWQwZmbusl'0%Dlx6m>J9ոWگķJ0MgL|v. >>̈́4C>s||6.Q`#fhnvc'٣bqѧ#V1UB
aD-y6ޛxyT؊b6[$lňll(B^h97M\%e"Ɩ7巀-~lVCt\ȸ
zǑ/zO`! MIg0}'0Yh $ ` 88 0 xڥkQMfdhUcԘ܋g`"BI@i`HB!/{xC'x)x A1μ+TyLfe 0 z@? w%Θ#1>tM;P46 30$g W#0A'VkKJ`fQ7~ %RۈbwKegjp >#L=cnɒܿ@l+eϒ}K3:?_3oN)~4EVl
'Nċn9A$m
N)Ώ~_gZgL<b Edq_YeN\żO|*~H\žětu y8յX/=\/BjshfQSy^'.)q˛h#91KYq_y]Kt=S? ^^{{Ӥsba>ŲYj@ J(iL, 1XqMHG1%qEU+0y'w4n88Qjo5(oŖ9ZY{GT<HSd7"0.hG3F5W"_9k/B5O`!$ +}.& ܨZnǑ ` @ Hb xڝTkA~ƻ$EBBoEA,lL*-pg,\H.v ,#^!&.sE}潙yP/hz&xԨZHyk&Y_=l]0!WbG9VSkϖ~`="3C=hb_f*ʚa\a똲FZO,ŽjM+0ec^ b}1Q~ͪ3z-\}Fh'S'zYCpm}V]U\>`xw_h&W<R8-SK/Rޓ,η_C眔ߕ.<Z_WoF{JJ۶Cޔl@(h,_P=1E1:V7m!7`4:%uHԽnj3;@EDWZW4ȳNBhR/`! ?DugËHZe xڥS;KA<|$FB1Xڨ`&N
@/X`(66rSXۙo ȁ\!|亮VpN8=3b8J0~`향Ʌzc4f6+gEfD'/B.%^36Z\`탒D'v-eד;'1L,
:'Zk+=GIzDK9[~R[P+:xԣ>ʴ}|_Z_Ы-3H-8ս# -|}eFY?Irv闻Ri@}$@<I96Y2 b<S(I,]R31CDYj(UpjgvՏ2)jF`!x vi~'
<k· ` P F xڥToPĉIT Ef(,H )pѪ7BXc;Q҅P`|y \O<E!j )C)ZWle9.fP8C].P6xZ{ !ǵ"aUcT!Msr6EOHZsK?ONҒVW[굮܁b{8_((9lfQX:pLGm6i|ҾGPa/oH~c[-<ں=(yoU!x=w3I(
;Wś e;£<4~;B$<KULU7e$._7eOc3]g0@֗4XLi|h[7+'ƻxb4ZX0``*@:аlJ-]F1x
JWF'4,x
+5rF],9'UTJ`J#'+յEҊz
}k`! !pt|p:^ ` ! xcdd``^ @c112BYL%bpu<L,56~) @ KH+ :P5<%!`35;aV&&ܤrh/or1 f3``@6b`a dU\" %4*3PZw0y{cdbR
,.Ieb"t? }2`!) Crbn۪jzp e% XJ xڕ1hA.=/U!+"QQx,.sl+! XjgJX[J^q|1B20|3;1o e ݊91Q6#NNTY_|5;52#H5śjRI:<\[Yw՟<mg(0jK4Q^WaVt\`C̢|3=3:zk#!Ӗ?9_ǤUIMIߊRH}R=7Hxi_ظń>\7q.Xr@7y}= M图/y,#/JYIJ]8]D}o>b~cU`TՂyRɪ᭭Wp%~=iæ'wͯx=8ܿ]Rh_v;mUxSY-P2#af6~h\؊v)Ǩ `!0 /L#։gKPi' k xڥT=oA};$- (.!SPYBgȑNE6 QPRPt? *-2w^,ws7'eGCH=Aq[oA\Jr} ٛ,
bCFlGJI9yػ=#\JSBq;W..9B2̛gvך[%Z8`\r%lCe#!7H9iv.N$yh2rf$}| O_xKoxVh8`ը->wxT0yCWu6I\N^}քI5&e\O3&żӿ"tsRн&;kZtE^Aֽ%{H?JP2TTt7`F¦'5CT_; 1e{Dըaf̒߫lץ?`!u da:x @n$ k C xڥTkAf&mIͮQ9Hsh9P*x3$meor xP[/'=m0ffA
`_)@QHўE 1a*H.&k{º6"B]a=cfƃ`
XIǪʤHPdkz\s
nWuu$DܤswȻ1Ψxb6?T7Ш)_Ʌst9i^bxAoZ6;{3@JD㝔ƧI9{C<+Q<2-.BSu-u3FίCp^6Z:_'Ù7F9J/Ao%4WgGRLZ=xiaE^u->n9Z5ЇZe1k,ZךSϘP+ˀ.{y w<xܮ%M]MC ntq)U{0=0BTo%jCﺊG:X|O<fwǔ7R no ꌒ~˝b~?͕PNG
IHDR ^ w PLTEf3 ̙f3 f3 ffffff3f 3333f333 f 3 f3 ̙f3 ̙̙̙̙f̙3̙ ffffff3f 3333f333 f 3 ̙f3 ̙̙f3 ̙f3 ff̙ffff3f 33̙33f333 ̙ f 3 ffffff3f fff̙fff3f ffffff3f fffffffffff3ff f3f3f3f3ff33f3 f f f f ff 3f 3333f333 333̙3f333 3333f333 3f3f3f3ff3f33f 33333333f33333 3 3 3 3 f3 33 f 3 ̙ f 3 f 3 f f f ff f3 f 3 3 3 3f 33 3 f 3 cmPPJCmp0712 H s bKGD H IDATx^]*x}>sM%AQ=nTTB 7Viu~^c??igmu\gu2({hꪓ)0eڳ(쓢gMY_gtl`ʤ08(,^yP0>!P^z<A|AQ^e]hVMcf<cYJ(V60zX/jC-88 aMPS2[2(8W" [D|e4gq 31}Bo!~gP1b%'.66SQf ",X^yl
@d6ՅOƄ0WļAak;>(`7xv4FΌv-lkB* ͡dlkuY+ߴ6El~%8C@%](/XUy'dX-}F:n@)4CS
LP6:b)Gk%ԷBvbφPQ/x1| XgsW8_[m9t@_Lj%} ur ƞ}rY]CjS8.rm+c9tC?_fS0,hVr,X;rφ4DYt XM;+؆S"L/|Qd~4l[6Ô"2Z}@L9KȽ@f TqlK>c)}?FЁ{\>g: ߕrQG~~ss0=G@S46S]TA_G<3}@s
=XmJ2`QA
9e T:~)ziyjG}Lq:c5gbHxlCV8jSh5e0pxPaK} 5) u Y&2|\H6$٦4R`St,3t:8gR!ⴃb$>m5t}MI R^M1ďwFfga5icr:CH6.?fΛ`A∥:$VT,aզĔd L}bok e-
JTU܅7IXP-&(VAX_&S2pҊ>է`װedYeVx>S}lTLL)h|Qy7acTV쓏{. (dL$4mddj"0T"? ss&^J8Zٹ^i~!|~`ͪ7Y_&x/#؈7"ROi!NH1wHd+e߇(6t9_,n0Rd@7~.T+5 WXN)oBX[بt3`5]8:rjW@$p#-C#Wx㹄lHSPNC3l_J$t]X9s6HGkm-SMɪ \DU@ZSZ##B&MgBHPRzn8g+gi־)wq}f~ΉoKbNImvwbҳEP&SkH*-)w"Y4]6SBɱps
6#Fvv Dhxȥ`5rhFlD//,֪L.ްb==ӮHdJea{`@FQα3)Pj<3CZʐ5-yux~x5P/S1-zJjW,4kj\Sg4BU٣idx,wYy1SqT{;&4o6m&fi[AKI|?(MMPNP~#(~ã0(]>l>| J%MdJTâ&(`J/W,ω=x.{G,w>.=E{ˀ-mZ%j(Miσ'S&S,>f2mʴ)Ypɔɔ)6MeJm\,.M%n/G<lP<㥕HEC9I7vN1WH0ໜf;hNBURb7Ae60PTQ:X$.bI;Fb7dKf֓"Uj8G%N[0X%v>3סs=QwӴ]N71Lp͋
=EgIT{`)TGpY[X3{Ft@1hȔtR#P%F
F\AA5s*NCrSQݮ1jBQJg]-23%p1(0tS+"pRSV$i(swt*hǔ;q_ 1cËĩ~\]߅+^cs4yQb0-|\J`h8`SpKڃ1u{?*1~o(*|izDY4DU|(Bv8F<)ԯ둒+b.X RbJp~[ $d'_OP@yBsU4vh^DmUcY;tiltr;08:u}
vgb'vC`5W:]>7
di1b{)z?.k:oB<JC\wP J{Oga.trCVbw70r:p(-{`ڶ!f &WFPI],ЁcJ"|3SN`9|й:P
B}cǃ RBtˆ8zj WUb}ӉŖ OpЁ.DÇ#CրުoMl dr̡TC;#P| '1s-=ԱL=i0}@qL^/x^%R%IЁVէv'S&SltLLL!0biڔɔ)6?]`g[qȲˑN/ u]?K))
u IENDB` nC W`PNG
IHDR ^ w PLTEf3 ̙f3 f3 ffffff3f 3333f333 f 3 f3 ̙f3 ̙̙̙̙f̙3̙ ffffff3f 3333f333 f 3 ̙f3 ̙̙f3 ̙f3 ff̙ffff3f 33̙33f333 ̙ f 3 ffffff3f fff̙fff3f ffffff3f fffffffffff3ff f3f3f3f3ff33f3 f f f f ff 3f 3333f333 333̙3f333 3333f333 3f3f3f3ff3f33f 33333333f33333 3 3 3 3 f3 33 f 3 ̙ f 3 f 3 f f f ff f3 f 3 3 3 3f 33 3 f 3 cmPPJCmp0712 H s bKGD H IDATx^] ~I?g9H`W8lM0AbOW3}tVџVMSOeJ3~Gk%Iv=}r2C-q^O6ex;34-'?P6
2`:]ae$hQA5R[=w=s'?^4G=AD/%\IlM,ݶ5Q"DP2g3.5|"_CQ~'(Rx-)UJ H;VQ/Լ6+6C)T( PVԼ$#Bk>('npa`;FQQ0Ԯ&5
Ķf_.4)&`k+
.yA2xw"u|D'(꿈IP4s(^Er){묮S@ԁߦ81j¼v,u`n9:
_ٞCxg7u;ox)n@
NKR>P>w em>K@\@p#u`6%qFm,W67ul
C@cڑN7ԁ״S6XaHd ѹYI)u(]R֣S^:K
1Q
Ҹ7j϶G}6u`?6RaL6=pި]%e`<J͠qS\dZ5mIYP#]_BcbP6Ml»צlFEl7(uu ~u HC(Mȴ<jtx%* ˨Lݣ5ϖwb(xC8qMIu@YA16TL=%eM9*eD!'p<XyP=X=mJ/P
lSɠ:u*;h\Rp\ ;MR4Ky=xm:P?>DfԽ+am:DŽ_Dyy͝tH?pxmvu$e3 ˄LH[Z0-'" S2:PD'aSR+a)"`L21M̦dr4cPSXu%e=eVYUW>>Q%eIG/DU-EKϿna렴2vIi.)6KJTG# f$^&ghpwfQםCx~UEχ<6fKa9$CO~r7j4c3܇,b1%cW_0.Ux;VYᨦ'?"X[xIjf"JGȎhW!F55WAܒPԖu9zYs @[dbH'zY0_Jt*TVEbÖh<{YguIYb]2)bK
+>HK,dU(A zɡwdz
ςھ)<?~ĥMG$$7;;FEn6a2mVeI0e[4Jx&~>kuA$+$^y')UW,&~0 DX*q)p?i92#hׯ6Z\YaJ&|q},a~RҐ)@zrD=\7^ <ObVBѢZ(a3Z-p5KԇbŦ=͊fs̚\ХX!-3x,rvXyјdаB6ʷHTCCURajA1U6=Ahspso?C:(_劝čOvc'd(UOsy+-aѥ(鰧LgZ7ǩM/5vIr.%-%]cD:5l])cj/kW
uvM*OLP vlLi~/9U^_z#?\b1ށÏ!; y&(qWh*>AYx265!^<Vv J4Cd|$eaS4<ڞwn42Yt!\O3ӾǦDA5H7K!33i(V_?)L(28hm`qhiVo|WyM)O Y:KԜ;)4e"(фP{ԦM]cg0Wu?_{lp;(cS wu(cqYfIW4섅yQ .wp I;` ^˼" N9w$1i(^@3D_yl}d!i(^ؖ:y.o\B!){2/u?@o<%[ZG;x]`3sUR-H<dtxLش96
&-,{n>ӂӞ\JdHhlȬPL|v#Hѣ;;©;Vo)kBPWK+KZ^ u (O1PX9u|DZ@,g^oR@i'p}E,܆gSSe5zSs>VR4x<@ F!ɍq'[96ө3ӿpY.Pf2TcVŽ٥%I .EpJ왠vDd;_*)^NYJ.LI x Ku |R8
;x&(u }Σ|(Nq`v `kPPxaM4o]$S5E͵O'~:wTOvtIC`_Rl?Οbk;)Cc<UÿKʇH\=p IENDB`@= @V}!a|8( Ì( n xZohU>00BF+W^ܰCJtcRR0.80*DB 4h
`P`ႃs|8~/&]8{?sn"Pwd<V^s[y7Tv`wp~?;݉o:ϵ<՜{rφpoS(ݏ<Bz><kHx¯76- oŬW&^%0xWޖĻBPޠZ0/Xk oŬOഽޥZ0/X'ފYox+̩O)8_8bW}^^^:88_ڳFR,'^x+f\q⭘o^ܞo|*3_|zx+gS7E)[1?G%YԞ/i|;CbŬ A9⭸Sx'ފ=$ފ9_8.os9\Yzg^k׳bֻBxX1]'^pg}?m_]{{Z1-/XyמSҷ`[ ފ/:Vϼlߤ"=+fe◩KT%iŬL_ӊsYWrƓ>aQܯx*\J_^/K<:ڷ<V<:=Cʓ/RNO7vOV/Eo@?_0zr(;cC*~|Pes;w-Cѱbz1]ӽ&/ej_&bw<\DVvxX;JE5/:[}#\0곹@?q䳸Xb>j~/v>`|.ȗt0è.^Cvo^{ oQuLMƳxECȟ#
o=v[Eznc
oAxءp,u؉~挢oz=*
1+O@(Ai].Go#g-u \|:j<,0P bzX9=[x@UEc,&*a=/z#ƺ,KOg֥`r]=xJEϓ}|~9>֯_淯
o_`R9iϘR#lߦ1Uo(<|pΰ,g+=2"W/(=+3폢_]R|>ޕ?ߐK7DKD@=@ :baifL 7. Fn xX=hQg1 T,bKFmBUHm$k`cXi4u3uyLxEoyovH g߲,^+;eID.u5gsߑJw^~G7E5-/0m(Ǟ7&wq=jrl8#4MxʯqJxHxʿ㸚^zM+1S3
_̧5yx0굅"Yrecb=O"XS|_(X^W?#`ԫJ<'b:u4y1?4Ũ <^"ԛ^(ɧ%Uy+>.3Ī?9v&EKqX-Z68vs,=Voʨ.ں;yl<Ag.o98sr1>>&_9n9=|oKÊxaPu>~mjX7Y!~'ze/ΐFlzwM|\{b{˓ۡSFY9a>R1Sg/ΉO#c[T=gΣziL)^ZgW՟'.}ط9WEe̜scZgb_7~;o_:?Fl[Ưq=;oBW@= {)F< | | Ku m> xXjA1V,iV`K4R6Z1EE-,Xj,/N^,7ps̞93"p
CC_/}:OQQ<9S#NҨsїoU?'6WLI$WN<MI71%1?V*]+"&3b܌x/FzRS+`c܉x/Fo2~^z++V~q/:+VU{1m 8~{=W&ŨX㣈b{ %IJW{JJWϻ{1xŨy2Ũwg%IJkWj[ QnZjtoHơo4V4MצKG?Y/;=O=*jgk>xF :_Oy^Ň}uk
Uڬ7EQ=ނzcZK|]m7kݡm_}=;oED{]Y8>xhf}}} -heY$T<6z_k+ϚV<n=Qx=Z@?g>x_ՆdVVl#dmu0@= Eʘuz@jq|d O % D #W
x\>wv5j(lJ\d.XZq--4ؕXZHShR) mJ
FMG a*6miնoy̛3ٟG.3w93sw{w 48L
' l` i,OLa7Y~-_kanW720p[ǖ
ܛ ;3]0
salf:nSބnX?~Lot:BjXLt1]ExZ?ƥlF<1>'?4OJV<.ar9B|>ހ<yn'բϚ!srP[9l1}bBnA7u tQK/\Ymw5>zިkY'Iy<ܭ^5އȯ0v+ȿ3?oKF[Bw }P8^Ta~7s7*M<?yNț{OYP>-!o߾~Bț~K]AųF8i<8Gۍ7Η(|O >õкV_Z'82V;4䏵U6}Ah֝ei5Io)^<o}qo >Լ1ô!pAׄ~qWkJx7
uMEk.=x}x1ah|%2Zo|v;p&JjGJs~"DK1M!/
\6ƹ& 7X}8)GSF_)LOﭱK1 eYRƘϳbte6%O(?s%?]EmRH?vn*-L?.3<' ~/nѤ[0#gp`˴6q.n|eqqoPCֵōI Kpo}_%o-vks%oZ=y*sN+VݏL.k^bR_卣^U1pWHi0uCcX[ECj;cv+G+fp::k9}~Daܶa>+ 4^= uĝ&a`H"ٝ0_'6bo̾&6Axt":`?h.^<}FϑKR:Zx]qݾH,Ӈ27Y9I#m#:G\dU岠~j0efn#~o)c+{ٗ=zEך-ch-|ek_m1v
u?^'{i+Hc]Ơ`7OM'.mYH0{ӻ4a\cTø1F±1k/Vh..[<fƵ00ۦ
q?0면.kk
Ed;RrO866my,c4+MWa<f~
L|-[p`7܂1n=-REܢ2j宙W!Ub&,TɶAw S,^1n0dLlT_/x9]%G/AmC%G/o6}]m\?H^9^^%M4~B-J\)GX}Ip*:Mٗ&d
qW,R[OQ5nб֝,.TMxӄƝD5W{gZUqsY01gC=Eq_J{(3^ 3_ +ct
z>G\fl_p;q9e"7ER$N߮4eӎmځڑCɟ{+93ֵmI<2">-ϱ&cu4g0NDACks6n[6fnFxjsU [רhWW#g0:dA}WA7F:&,`nrĴyؓdK䲁<ڊ'܍ۣ;?Q=?Σ?0?pl18%1N;+{h@Bk^"ܗB{lpO8Vݳw]$[<O"ι3}=Am:a.oԦ`7MH.s宋ͥ2+ؚ-EKM8:,<aϫpZy@FsZge3AU/sY\|:ܴ$-[}}`}P沠0`6<C.1ܩ^+c<ɈzGkzcP51pnQ_aLjFX 7Z>r.scCКIo2\dTkrhג~kGb&U=L.҇fah<'@e})soR o@oh-:(N-Z7cuԺw/ݑ{5`?֬,xaoZ/2|1 4{ (
d
R W o r k s h e e t E x c e l . S h e e t . 8 0 2 M i c r o s o f t E x c e l W o r k s h e e t W o r k s h e e t E x c e l . S h e e t . 8 0 2 M i c r o s o f t E x c e l W o r k s h e e t E q u a t i o n E q u a t i o n . 3 0 , M i c r o s o f t E q u a t i o n 3 . 0 E q u a t i o n E q u a t i o n . 3 0 , M i c r o s o f t E q u a t i o n 3 . 0 E q u a t i o n E q u a t i o n . 3 0 , M i c r o s o f t E q u a t i o n 3 . 0 E q u a t i o n E q u a t i o n . 3 0 , M i c r o s o f t E q u a t i o n 3 . 0
E q u a t i o n E q u a t i o n . 3 0 , M i c r o s o f t E q u a t i o n 3 . 0 R W o r k s h e e t E x c e l . S h e e t . 8 0 2 M i c r o s o f t E x c e l W o r k s h e e t
E q u a t i o n E q u a t i o n . 3 0 , M i c r o s o f t E q u a t i o n 3 . 0 E q u a t i o n E q u a t i o n . 3 0 , M i c r o s o f t E q u a t i o n 3 . 0 E q u a t i o n E q u a t i o n . 3 0 , M i c r o s o f t E q u a t i o n 3 . 0 = : E q u a t i o n E q u a t i o n . 3 0 , M i c r o s o f t E q u a t i o n 3 . 0 ; W o r k s h e e t E x c e l . S h e e t . 8 0 2 M i c r o s o f t E x c e l W o r k s h e e t . / 0 ` D A r i a l r N e | | w 0 z[ 0 D G a r a m o n d e | | w 0 z[ 0 D T i m e s N e w R o m a n 0 z[ 0 0 D W i n g d i n g s R o m a n 0 z[ 0 @ D T r e b u c h e t M S a n 0 z[ 0 "P D C o u r i e r N e w a n 0 z[ 0 1` D [SO r i e r N e w a n 0 z[ 0 p D G u l i m r N e w a n 0 z[ 0 " @ 0.
@ n ? " d d @ @@ `` @ 8 6 (
! " O # $ % Q & ' ( ) * + , b $ V:
+Ą; 2 $ /GT{T~M Z " $ !S^/V~Ù P x b $ vel^o&9 ( Ȥ b $ owEʤ7r ^ " $ =SPC".Z " $ q )w=~5 " $ x_B{mxJ ] " $ Fcv˨@4W 2 $ MIg0}'0Yh 2 $ +}.& ܨZnǑ , 2 $ ?DugËHZe 2 $ vi~'
<k· 2 $ !pt|p: k $ 2 $ Crbn۪jzp 1 2 $ /L#։gKPi' 8 2 $ da:x } b $ ꌒ~˝b~?͕ w q b $ W` K , " $ @V}!a| 3= " $ :baif H B " $ {)F< #F " $ Eʘuz@jq I 0 A A @ 8 ʚ; ʚ; g 4 j d j d z[ 0 p p p @ < 4 d d d d @ 0| w < 4 ! d ! d @ < 0| @ _ _ _ P P T 1 0 | D [SO r i e r N e | | 0 z[ 0 D A r i a l r N e | | 0 z[ 0 D T i m e s N e w R o m a n 0 z[ 0 0 D G u l i m N e w R o m a n 0 z[ 0 "@ D C o u r i e r N e w m a n 0 z[ 0 1 ( L _ _ _ P P T 9 . & +
? L + 8 S u r v e y , L O N - C A P A D a t a M i n i n g O = ^ ( 0 Data Mining for an Educational Web-based system 1 1 C * Ph.D. SurveyAdviser: Dr. Bill PunchSeptember 2002Behrouz MinaeiGenetic Algorithm Research and Application GroupDepartment of Computer Science and EngineeringMichigan State University P c c c
c c c z c ) Topics c . Problem OverviewLiterature ReviewClassification MethodsNon-tree ClassifiersCombination of ClassifiersDecision Tree-based ClassificationConclusion and Next Steps T : S : a S a a Problem Overview c . L This research is a part of the latest online educational system developed at MSU, the Learning Online Network with Computer-Assisted Personalized Approach (LON-CAPA). In LON-CAPA, we are involved with two kinds of large data sets: 1) Educational resources: web pages, demonstrations, simulations, individualized problems, quizzes, and examinations. 2) Information about users who create, modify, assess, or use these resources. Find classes of students. Groups of students use these online resources in a similar way. Predict for any individual student to which class he/she belongs. , P L P c c g C c D c c c c c c g c c c c ; c 9 + LON-CAPA *
c , c 0 LON-CAPA is an open source GNU (GPL) system, built as a geographically distributed network of constantly connected serversprovides instructors with a common, scalable platform to assist in all aspects of teaching a courseAllows instructors to create educational materials and to share such learning resources with colleagues across departments and institutionsDistributed Users can log into any machines and everywhere in the network, access resources under a usernameIndividualized Assessment $ c Courses using LON-CAPA at MSU c $ f Current Status c & A Started October 2000High SchoolsMio AuSable High School - Mio, MichiganCharlotte High School - Charlotte, MichiganFowlerville High School - Fowlerville. MichiganTheodore Roosevelt High School - Wyandotte, MichiganCommunity CollegesWestshore Comm. C. - Scottsville, MichiganTruckee Meadows Comm. C. - Reno, Nevada P P f P c B g f B S g f , & J Universities (department level)Ohio University at Athens - Athens, OhioSUNY Stony Brook - Stony Brook, New YorkFlorida State University - Tallahassee, FloridaUniversity of Massachusetts at Amherst - Amherst, MassachusettsMichigan State University, various departments - East Lansing, MichiganOutside United StatesSimon Fraser University - Vancouver, CanadaUniversity of Halle - Halle, GermanyUniversity of Oldenberg - Oldenberg, Germany V P B g f b ~ g f P {
Resource Evaluation in Lon-CAPA a Questionnaires, which are completed by faculty and students who use the educational materials to assess the quality and efficacy of resources Increasing demand for automated methods for evaluating resources. One such method is data mining. a Literature Review a . D a t a M i n i n g T h e n o n t r i v i a l p r o c e s s o f i d e n t i f y i n g v a l i d , n o v e l , p o t e n t i a l l y u s e f u l , a n d u l t i m a t e l y u n d e r s t a n d a b l e p a t t e r n s i n d a t a " ( F r a w l e y e t a l . , 1 9 9 2 ; F a y y a d e t a l . , 1 9 9 6 ) D e s c r i p t i v e T a s k s ( C l u s t e r i n g ) P r e d i c t i v e T a s k s ( C l a s s i f i c a t i o n ) M i x e d T a s k s A s s o c i a t i o n R u l e D i s c o v e r y : ( P r o d u c e d e p e n d e n c y r u l e s w h i c h w i l l p r e d i c t o c c u r r e n c e o f a n i t e m b a s e d o n o c c u r r e n c e s o f o t h e r i t e m s ) S e q u e n t i a l P a t t e r n D i s c o v e r y : ( S e q u e n t i a l d e p e n d e n c i e s a m o n g d i f f e r e n t e v e n t s , E v e n t o c c u r r e n c e s i n t h e p a t t e r n s a r e g o v e r n e d b y t i m i n g c o n s t r a i n t s ) M c w c c ) c c M c c c g c c c c t c c
Classification Methods a Bayesian Classifier Decision tree-based method Neural Network Approach k-Nearest Neighbor (kNN) Decision Rule Parzen Window classifierGenetic Algorithm (GA) ] 1 a e a e a e C a e a ^ C Data Set: PHY183 SS02 a * 227 students12 Homework sets184 Problems + + a Class Labels (3-ways) a % Distributed Data: Course / Students & & c & Course Datals -alF /home/httpd/lonUsers/msu/1/2/6/12679c3ed543a25msul1/-rw-r----- 1 www users 65516545 Apr 25 16:20 activity.log-rw-r----- 1 www users 17155 Apr 25 16:20 classlist.db-rw-r--r-- 1 www users 60912 Apr 25 16:20 classlist.hist-rw-r----- 1 www users 103030 May 15 14:47 nohist_calculatedsheets.db-rw-r----- 1 www users 13050 May 9 21:04 nohist_expirationdates.db-rw-r--r-- 1 www users 6 Jan 4 16:40 passwdStudent Data c t c c 7 c c ( c c c 7 @ 2 / 2 2 / + Preprocessing and Extracting the Features , , c $ * * Preprocessing student database Course data Activity LogOriginal Stored Data1007070627:msul1:1007070573%3a%2fres%2fadm%2fpages%2fgrds%2egif%3aminaeibi%3amsu%261007070573%3a%2fres%2fadm%2fpages%2fstat%2egif%3aminaeibi%3amsu%261007070574%3amsu%2fmmp%2flabquiz%2flabquiz%2esequence___1___msu%2fmmp%2flabquiz%2fnewclass%2ehtml%3aminaeibi%3amsu%261007070589%3amsu%2fmmp%2flabquiz%2flabquiz%2esequence___5___msu%2fmmp%2flabquiz%2fproblems%2fquiz2part2%2eproblem%3aminaeibi%3amsu%261007070606%3a%2fadm%2fflip%3aminaeibi%3amsu%261007070620%3a%2fadm%2fflip%3aminaeibi%3amsu%261007070627%3a%2fres%2fadm%2fpages%2fs%2egif%3aminaeibi%3amsu%261007070627%3a%2fadm%2flogout%3aminaeibi%3amsuPassed over some Perl Modules 1007070573 /res/adm/pages/grds.gif minaeibi /res/adm/pages/stat.gif1007670091 /res/adm/pages/grds.gif minaeibi /adm/flip1007676278 msu/mmp/labquiz/labquiz.sequence___2___msu/mmp/labquiz/problems/quiz1part1.problem 1007743917 /adm/logout minaeibi1008203043 msu/mmp/labquiz/labquiz.sequence___1___msu/mmp/labquiz/newclass.html minaeibi Z , Z Z Z X Z Z S Z b b b b b b X c b c c z c q Q Extracted Features a Total number of correct answers. (Success rate)Success at the first tryNumber of attempts to get answerTime spent until correctTotal time spent on the problem Participating in the communication mechanisms " n Z c " ! Classifiers c 8 N Non-Tree Classifiers (Using MATLAB)Bayesian Classifier1NNkNN Multi-Layer PerceptronParzen WindowCombination of Multiple Classifiers (CMC)Decision Tree-Based SoftwareC5.0 (RuleQuest <<C4.5<<ID3)CART (Salford-systems)QUEST (Univ. of Wisconsin)CRUISE [use an unbiased variable selection technique] 6 $ Z m Z Z Z Z Z $ c C c * g 3 g 3 c t c c c c c c c > < e " Bayesian Classifier a a pattern classified into class with the highest posterior probability or likelihood The feature vectors in our dataset are assumed to be Gaussian distributed, Quadratic discriminant FunctionThe parameters of the Gaussians are estimated using maximum likelihood estimation S ! e e 4 e a L a a a Q a a a # k Nearest Neighbor a k Nonparametric classifier: Classification without any assumptions about the distribution of the training and testing dataThe Euclidean distances between the testing sample and all the samples in the training set are calculatedAssign the test sample to the label most frequently represented among the k nearest neighborIn this survey the optimal value of k is 3 X l Z d c c a c $ Neural Network Classifier c ( Multi-layer Perceptron (MLP) Feed Forward Back-propagation algorithm Sigmoidial activation functionTuning the learning rate, the number of epochs, the number of hidden layers, and the number of neurons in every hidden layer D a a a G
% Parzen Window Classifier c ( A d-dimensional hypercube is formed around all the training samples and then, based on the number of patterns that fit in those windows the probability estimates of the different classes are made Multivariate normal distribution is assumed for r 3 a a a c 2 a & * Combination of Multiple Classifiers (CMC) + + c " C l a s s i f i e r s a r e f o l l o w e d b y a v o t e . T h e c l a s s g e t t i n g m a x i m u m v o t e s f r o m t h e i n d i v i d u a l c l a s s i f i e r s w i l l b e a s s i g n e d t o t h e t e s t s a m p l e W e a s s u m e d t h e r u l e o f m a j o r i t y v o t e a s g e t t i n g m o r e t h a n o r e q u a l 7 5 % v o t e s , n o t g e t t i n g m o r e t h a n o r e q u a l 5 0 % v o t e s S i g n i f i c a n t i m p r o v e m e n t O r a c l e c h o o s e s t h e c o r r e c t r e s u l t s i f a n y J 6 a a o a $ a a $ a C a a a ' Results of Non-tree Classifiers a
( Decision Tree-based Classifier a P o p u l a r i n d a t a m i n i n g c o n t e x t h i e r a r c h i c a l o r l a y e r e d a p p r o a c h t o c l a s s i f i c a t i o n A d v a n t a g e s : t r a i n f a s t - e v a l u a t e f a s t - c o m p a c t m o d e l s - i n t e l l i g i b l e i f s m a l l - d o f e a t u r e s e l e c t i o n - d o n ' t u s e a l l f e a t u r e s - e a s y t o c o n v e r t t o r u l e s - c a n h a n d l e m i s s i n g v a l u e s I m p o r t a n t r o l e i n p a t t e r n r e c o g n i t i o n : h a n d l i n g n o n - m e t r i c d a t a C o r e a l g o r i t h m u s e s a t o p - d o w n , r e c u r s i v e , g r e e d y s e a r c h o n t h e s p a c e o f a l l p o s s i b l e d e c i s i o n t r e e s : I D 3 , C 4 . 5 , C A R T , & C r i t i c a l i s s u e s : H o w t o s p l i t , H o w t o a v o i d o v e r f i t t i n g ( p r u n i n g ) P c ( S C * ! Splitting Using Impurity Function " " a ! A heuristic to select a query that decreases the impurity as much as possible Entropy impurityGini impurityTwoingPearson Chi^2Likelihood ratio G^2MPI (Mean Posterior Improvement )Members of the divergence family @ Z Q c c c r g + Gini vs. Twoing a , Tree Topologies 2 a a 8 * # Avoid overfitting: Cross Validation $ $ a The main idea of cross-validation is to estimate how well the current hypothesis will predict unseen data k-fold cross-validation: Divide the data into k subsets of approximately equal size. We train the data k times, each time leaving out one of the subsets from training, but using only the omitted subset to compute the error threshold of interest. If k equals the sample size, this is called "Leave-One-Out" cross-validation (Jackknife).In this survey:2-fold, 10-fold and Jackknife are used. Z k c g f g g g g ) g g g g g 7 c - & 10-fold Cross-Validation vs. Jackknife ' ' c % . Variable Importance using CART a / A sample of C5.0 tree/ Rule set ! ! a ! TotalCorrect <= 165::...AvgTries > 850: Low (13/2): AvgTries <= 850:: :...Discussion > 2:: :...TotalTimeSpent <= 20.57: Low (2): : TotalTimeSpent > 20.57: Middle (3/1): Discussion <= 2:: :...TotalTimeSpent > 22.63: Low (8): TotalTimeSpent <= 22.63:: :...AvgTries <= 561: Low (7/1): AvgTries > 561:: :...TotalCorrect > 156: Low (2): TotalCorrect <= 156:: :...TotalCorrect <= 136: Low (3/1): TotalCorrect > 136: Middle (6)Rule 1: (158/25, lift 1.2) TotalCorrect > 165 -> class Passed [0.838]Rule 3: (7, lift 3.2) FirstCorrect <= 78 TotalCorrect <= 165 -> class Failed [0.889] * Z g c g g c g g c g g c g g $c $ (g ( $ (g ( ,c , 0g 0 0g 0 4c 4 8g 8 8g 8 <c < g g c g g c g g c g g c g g $c $ (g ( (g ( ,c , 0g 0 0g 0 4c 4 8g 8 <c < g c g c ! g c g c g $c $ (g ( ,c , 0g 0 4c 4 ! 8g 8 <c < g c - < # $ ! + 8 I , 0 L CART tree for 3-Classes using Entropy criterion: (10-fold Cross-Validation) M M c 1 Final Results 2 ! Summary/ Conclusion (1) a r Five non-tree classifiers and four tree-based software are used to segregate the students A combination of multiple classifiers leads to a significant accuracy improvement in all three cases. Using multiple linear regression we realize the importance of the features. We can find that 3 of the 6 features have more correlation with the class labels in all three cases. s s a 3 " Summary/ Conclusion (2) a S h o w e d w h e n o u r i n d i v i d u a l c l a s s i f i e r s a r e w o r k i n g w e l l , c o m b i n i n g c l a s s i f i e r s h a s l i t t l e i m p r o v e m e n t i n c l a s s i f i c a t i o n p e r f o r m a n c e , b u t w h e n w e h a v e w e a k l e a r n e r c l a s s i f i e r s C M C h a s a s i g n i f i c a n t i m p r o v e m e n t i n a c c u r a c y . T h e s u c c e s s f u l i m p l e m e n t a t i o n s o f c l a s s i f y i n g t h e s t u d e n t s i n 2 a n d 3 - C l a s s e s d e m o n s t r a t e t h e m e r i t s o f u s i n g t h e L O N - C A P A d a t a f o r p a t t e r n r e c o g n i t i o n i n o r d e r t o p r e d i c t t h e s t u d e n t s f i n a l g r a d e s b a s e d o n t h e i r f e a t u r e s , w h i c h a r e e x t r a c t e d f r o m t h e h o m e w o r k d a t a . H o w e v e r , u s i n g 1 0 - f o l d C r o s s - V a l i d a t i o n a n d J a c k k n i f e V a l i d a t i o n , w e a r e a b l e t o s h o w t h a t t h e s e d a t a a r e s u f f e r i n g f r o m o v e r f i t t i n g i n t h e c a s e o f 9 - C l a s s e s . Z c c < c # c c c 4 # Next Steps (1) a Gathering more sample data by combining one course data during several semesters to avoid overfitting in the case of 9-classes.Finding the paths that students usually choose to solve the different types of the problems from activity log to extract more relevant features. 2 c ! ! 5 $ Next Steps (2) a M Finding the association rules and dependencies among the groups of problems (Mathematical, Optional Response, Numerical, Java Applet, etc)Finding the classification results in relation to every individual problem in order to find which problem would be the best predictor Implementing fuzzy classification for grouping students 9 L a ? a c c c c 9 a 6 % Next Steps (3) a d W e i g h t i n g f e a t u r e s v s . f e a t u r e s e l e c t i o n U s i n g E v o l u t i o n a r y C o m p u t a t i o n f o r e x t r a c t i n g a n d w e i g h t i n g t h e f e a t u r e s t o f i n d t h e o p t i m a l s o l u t i o n i n L O N - C A P A D a t a M i n i n g C l u s t e r i n g t h e s t u d e n t d a t a b a s e i n o r d e r t o d e s c r i b e t h e s t u d e n t b e h a v i o r a n d e v a l u a t i n g t h e t y p e o f p r o b l e m s e f f e c t s o n s t u d e n t s e f f o r t 3 Z 3 a / 7 ` 333 3 ff3 ` 333 3f 33 ff3 ` " 333 3 ̙ ff3 ` K f 3 ̙ ` & e ̙3 g 3f ` f 333 ̙ po7 ` ___ f3 ̙ ;/ f 9 ` ff 3 Lm ` ff 3 LmN Lm > ? " d d @ * ? n A d @ q < n A q F L K #M n ? " d d @ @@ `` P R M ` 2 p > > (
H X* ? ? " `} X Click to edit Master title style ! ! @
H * ? ? " ` * R Click to edit Master text stylesSecond levelThird levelFourth levelFifth level ! S
6 L* # " ` ] `} * \ *
6 * # " ` ` * V *
6 "* # " ` ] `} * V *
C @ A B C D E F jJ @ 3 " 0 ` B
s * D jJ " 0 `0 H
0 h ? ___ f3 ̙ ;/ f 9 _ _ _ P P T 1 0 i .
+ D= ' = @B + E d g e 0 (
H 3. ? ? " @ . X Click to edit Master title style ! !
H h6. ? ? " . [ # Click to edit Master subtitle style $ $
6 ;. # " ` ] `} . \ *
6 4@. # " ` ]} . V *
6 C. # " ` ] `} . V *
C @ A B C D E F 8c @ 3 " @ B
s * D jJ " , $
0 H
0 h ? ___ f3 ̙ ;/ f 9 _ _ _ P P T 1 0 i .
+ ity D= ' = @B +
0 z r P
(
0 . P
. P *
0 H. . R *
d
c $ ?
.
0 h.
0 . R Click to edit Master text stylesSecond levelThird levelFourth levelFifth level !
S
6 . _ P . P *
6 . _ . R *
H
0 h ? 33 8 0 _ _ _ P P T 1 0 . 9\ K0 L + 8 S u r v e y , L O N - C A P A D a t a M i n i n g X (
s * O. " P ` .
s * LJ. " 0 . B
s * h ? f 3 | y _ _ _ P P T 1 0 Y + D= ' = @B + K0 ` < (
~
s * . `} . ~
s * |. ` . H
0 h ? f 3 | y _ _ _ P P T 1 0 Y + D= ' = @B + K0 p R (
~
s * . ` .
s * . . " P@08X H
0 h ? f 3 | y _ _ _ P P T 1 0 Y + D= ' = @B + E K0 D < (
~
s * * * ~
s * * 0 *
P A * H
0 h ? ___ f3 ̙ ;/ f 9 _ _ _ P P T 1 0 i . {WP + D= ' = @B + K0 (
~
s * T'h `} h
0 2h ` h @` B
C A H
0 h ? ̙ 33 y _ _ _ P P T 1 0 Y + D= ' = @B + K0 / (
~
s * ;h ` h
Z Ah " `
h @`
B HJh " ` p
h R
s * A 0
f Kh ? "
PK E Installations in ProgressUniversity of North Carolina at Greensboro - Greensboro, North CarolinaUniversity of Michigan, ITCS - Ann Arbor, MIEotvos Lorand University - Budapest, HungaryDakar University - Dakar, SenegalGeorge Washington University - Washington, D.C.University of South Carolina -Columbia, South Carolina Z b
, g f , H
0 h ? ̙ 33 y _ _ _ P P T 1 0 Y + D= ' = @B + K0 $ < (
$ ~
$ s * ,ih `} h ~
$ s * jh ` h H
$ 0 h ? ___ f3 ̙ ;/ f 9 y _ _ _ P P T 1 0 Y + D= ' = @B + K0 ( < (
( ~
( s * oh `} h ~
( s * ph ` h H
( 0 h ? ___ f3 ̙ ;/ f 9 y _ _ _ P P T 1 0 Y + D= ' = @B + K0 0 < (
0 ~
0 s * h `} h ~
0 s * Ph ` h H
0 0 h ? f 3 | y _ _ _ P P T 1 0 Y + D= ' = @B + K0 4 r (
4 ~
4 s * h `} h ~
4 s * h @ ` h
4
Z ? " `"x
4
V A ? PK
h H
4 0 h ? ___ f3 ̙ ;/ f 9 y _ _ _ P P T 1 0 Y + D= ' = @B + ( K0 7 /
8 (
8 ~
8 s * * ` h
8
f h ? " yr E (
#
8
f h ? " WyA y Z 0 0
8
#l A ? ? "
8
#l A ? ? " K
8
#l A ? ? "
8
B h ? " p c 2-Classes "
0
F
8
B * ? " 0p c 3-Classes "
0
F
8
B th ? " p
c 9-Classes "
0
F H
8 0 h ? ___ f3 ̙ ;/ f 9 y _ _ _ P P T 1 0 Y + D= ' = @B +
K0 < T (
< ~
< s * h `p h
< s * Hh ` h @`
<
f h ? " xH X ls -alF /home/httpd/lonUsers/msu/m/i/n/minaeibi-rw-r--r-- 1 www users 13006 May 15 12:21 activity.log-rw-r----- 1 www users 12413 Oct 26 2000 coursedescriptions.db-rw-r--r-- 1 www users 11361 Oct 26 2000 coursedescriptions.hist-rw-r----- 1 www users 13576 Apr 19 17:45 critical.db-rw-r--r-- 1 www users 1302 Apr 19 17:45 critical.hist-rw-r----- 1 www users 13512 Apr 19 17:45 email_status.db-rw-r----- 1 www users 23626 Apr 19 17:45 msu_12679c3ed543a25msul1.db-rw-r--r-- 1 www users 3363 Apr 19 17:45 msu_12679c3ed543a25msul1.hist-rw-r----- 1 www users 12470 Apr 19 17:45 nohist_annotations.db-rw-r--r-- 1 www users 13 Apr 19 17:45 passwd-rw-r--r-- 1 www users 12802 May 3 13:08 roles.db-rw-r--r-- 1 www users 1316 Apr 12 16:05 roles.hist 0 0 e 0
/ # # 7 # # # L # # N # # B # # D # # F # # 7 # # # T # # L # # = # # ? # # A # # $ z ! = 2 / ? / C O N 2 / 9 /
.
~ }
| H
< 0 h ? ̙ 33 y _ _ _ P P T 1 0 Y + D= ' = @B + K0 0 @ 6 (
@ x
@ c $ u u ~
@ s * u 0P u H
@ 0 h ? f 3 | y _ _ _ P P T 1 0 Y + D= ' = @B + K0 @ D L (
D ~
D s * )u `} u
D c $ 6* f u " hu= H
D 0 h ? ___ f3 ̙ ;/ f 9 y _ _ _ P P T 1 0 Y + D= ' = @B + K0 P H 6 (
H ~
H s * 6u `} u x
H c $ 7u ` u H
H 0 h ? ___ f3 ̙ ;/ f 9 y _ _ _ P P T 1 0 Y + D= ' = @B + K0 ( ` L (
L ~
L s * Bu `} u ~
L s * Bu ` u
L
#l A
? ? " C
L
#l A ? ? " H
L 0 h ? 33 33 y _ _ _ P P T 1 0 Y + D= ' = @B + p P 6 (
P ~
P s * Iu `} u x
P c $ Iu & u H
P 0 h ? ___ f3 ̙ ;/ f 9 _ _ _ P P T 1 0 i . 0\pY + D= ' = @B + [ K0 j b T (
T ~
T s * lXu `} u ~
T s * @Yu ` u
T
#l A ? ? " p0 P
H
T 0 h ? ___ f3 ̙ ;/ f 9 y _ _ _ P P T 1 0 Y + D= ' = @B + K0 X f (
X ~
X s * hbu `} u ~
X s * <cu 0 u
X
#l A ? ? " @p
X
#l A ? ? " p`
X 0
Z A = ? A A ? = u H
X 0 h ? ___ f3 ̙ ;/ f 9 y _ _ _ P P T 1 0 Y + D= ' = @B + K0 \ < (
\ ~
\ s * `lu ` u ~
\ s * 4mu ` u H
\ 0 h ? ___ f3 ̙ ;/ f 9 y _ _ _ P P T 1 0 Y + D= ' = @B + K0 ` t (
` ~
` s * Pwu `} u
`
#l A R ? ? " P R H
` 0 h ? ___ f3 ̙ ;/ f 9 y _ _ _ P P T 1 0 Y + D= ' = @B + K0 d < (
d ~
d s * ~u `} u ~
d s * tu `O1 u H
d 0 h ? f 3 | y _ _ _ P P T 1 0 Y + D= ' = @B +
K0 l ` (
l ~
l s * 0u `} u ~
l s * u ` ` u
l 0
f A
? ? " @
u
l 0
c$ A ? @ 5% 8c 8c
? 1 d 0u 0@T y2 N P ' p < ' p A) B C D| E | | S " ` ` u
l
#l A ? ? " ` `8 H
l 0 h ? ___ f3 ̙ ;/ f 9 _ _ _ P P T 1 0 i . Z + D= ' = @B + p (
p ~
p s * u `} u
p
Z ? " 66 d
p
S < A
? * C : \ D o c u m e n t s a n d S e t t i n g s \ M o h s e n M a r y a m Z a h r a \ D e s k t o p \ L \ D a t a M i n e \ S a l f o r d S y s t e m s - P r o d u c t s - W h i t e p a p e r s _ f i l e s \ g i n i 4 . g i f T w o i n g S p l i t D i a g r a m X
p
Z ? " 66 ^
p
S 6 A
? & C : \ D o c u m e n t s a n d S e t t i n g s \ M o h s e n M a r y a m Z a h r a \ D e s k t o p \ L \ D a t a M i n e \ S a l f o r d S y s t e m s - P r o d u c t s - W h i t e p a p e r s _ f i l e s \ g i n i . g i f G i n i S p l i t D i a g r a m
p
f xu ? " ~ v 0 _ _ _ P P T 1 0 6 _ _ _ P P T 9 Gini looks for the largest class in dataset, tries to isolate it from all other classesTwoing first segments the classes into two groups, attempting to find groups that together add up to 50 percent of the data. Twoing then searches for a split to separate the two subgroups < g c o H
p 0 h ? ___ f3 ̙ ;/ f 9 y _ _ _ P P T 1 0 Y + D= ' = @B + I K0 H @ t (
t ~
t s * u `} u <
t
3 A ? ^ :
t
3 YT}
t
#l u ? " P0 ^ Some of CART reports for 9-Classes using different criteria, using 10-fold Cross-Validation H ] 0
\ " " #
t
f ? " <
t
3 A ? <
t
3 A ? P`@
t
3r u ? " ~ v 0 _ _ _ P P T 1 0 6 _ _ _ P P T 9 Entropy Gini Twoing P 0
c b c $ H
t 0 h ? ___ f3 ̙ ;/ f 9 _ _ _ P P T 1 0 i . Z + D= ' = @B + m $ (
r
S Tu `} u r
S (u ` u H
0 h ? ___ f3 ̙ ;/ f 9 y _ _ _ P P T 1 0 Y + D= ' = @B + ѝ K0 М Ȝ x ` (
x ~
x s * hu `} u L `
x # ". " ` u f
x
#l ? " ` F > 6 _ _ _ P P T 9 f 74.90% 6 ( " d % f
x
#l 0 ? " [ F > 6 _ _ _ P P T 9 f 68.30% 6 ( " d % f
x
#l ? " [ F > 6 _ _ _ P P T 9 f 48.00% 6 ( " d % f
x
#l D ? " @ F > 6 _ _ _ P P T 9 f 31.70% 6 ( " d % f
x
#l 0 ? " @ F > 6 _ _ _ P P T 9 f 20.70% 6 ( " d % f
x
#l 9 ? " F > 6 _ _ _ P P T 9 f 17.20% 6 ( " d %
x
#l ,D ? " V N F _ _ _ P P T 9 ( p Ordered Twoing 8 ( " d " % f
x
#l M ? " X ` F > 6 _ _ _ P P T 9 f 75.30% 6 ( " d % f
x
#l X ? " [ X F > 6 _ _ _ P P T 9 f 54.60% 6 ( " d % f
x
#l 4b ? " X [ F > 6 _ _ _ P P T 9 f 47.60% 6 ( " d % f
x
#l l ? " @ X F > 6 _ _ _ P P T 9 f 31.30% 6 ( " d % f
x
#l w ? " X @ F > 6 _ _ _ P P T 9 f 19.40% 6 ( " d % f
x
#l ? " X F > 6 _ _ _ P P T 9 f 17.20% 6 ( " d % x
x
#l ? " X V N F _ _ _ P P T 9 ( h Twoing 8 ( " d " % f
x
#l Ȍ ? " ` X F > 6 _ _ _ P P T 9 f 76.20% 6 ( " d % f
x
#l D ? " [ X F > 6 _ _ _ P P T 9 f 68.70% 6 ( " d % f
x
#l h ? " [ X F > 6 _ _ _ P P T 9 f 52.00% 6 ( " d % f
x
#l ܙ ? " @ X F > 6 _ _ _ P P T 9 f 37.90% 6 ( " d % f
x
#l ? " @ X F > 6 _ _ _ P P T 9 f 19.80% 6 ( " d % f
x
#l h ? " X F > 6 _ _ _ P P T 9 f 18.90% 6 ( " d % y
x
#l Ϗ ? " X V N F _ _ _ P P T 9 ( i Entropy 8 ( " d " % f
x
#l ُ ? " ` F > 6 _ _ _ P P T 9 f 74.50% 6 ( " d % f
x
#l ? " [ F > 6 _ _ _ P P T 9 f 66.00% 6 ( " d % f
x
#l ? " [ F > 6 _ _ _ P P T 9 f 48.00% 6 ( " d % f
x
#l d ? " @ F > 6 _ _ _ P P T 9 f 35.20% 6 ( " d % f
x
#l ? " @ F > 6 _ _ _ P P T 9 f 19.40% 6 ( " d % f
x
#l $ ? " F > 6 _ _ _ P P T 9 f 17.20% 6 ( " d %
x
#l ? " V N F _ _ _ P P T 9 ( p Symmetric Gini 8 ( " d " % f
x
#l " ? " Q ` F > 6 _ _ _ P P T 9 f 74.50% 6 ( " d % f
!x
#l ? " [ Q F > 6 _ _ _ P P T 9 f 66.00% 6 ( " d % f
"x
#l 5 ? " Q [ F > 6 _ _ _ P P T 9 f 48.00% 6 ( " d % f
#x
#l X? ? " @ Q F > 6 _ _ _ P P T 9 f 35.20% 6 ( " d % f
$x
#l @ ? " Q @ F > 6 _ _ _ P P T 9 f 19.40% 6 ( " d % f
%x
#l S ? " Q F > 6 _ _ _ P P T 9 f 17.20% 6 ( " d % v
&x
#l 0^ ? " Q V N F _ _ _ P P T 9 ( f Gini 8 ( " d " % g
'x
#l pU ? " ` Q F > 6 _ _ _ P P T 9 g Testing 6 ( " d % h
(x
#l b ? " [ Q F > 6 _ _ _ P P T 9 h Training 6 ( " d % g
)x
#l \m ? " [ Q F > 6 _ _ _ P P T 9 g Testing 6 ( " d % h
*x
#l 4 ? " @ Q F > 6 _ _ _ P P T 9 h Training 6 ( " d % g
+x
#l ܐ ? " @ Q F > 6 _ _ _ P P T 9 g Testing 6 ( " d % h
,x
#l ? " Q F > 6 _ _ _ P P T 9 h Training 6 ( " d % s
-x
#l | ? " Q V N F _ _ _ P P T 9 ( c 8 ( " d " % {
.x
#l ? " [ ` V N F _ _ _ P P T 9 ( k 9-Classes 8
( " d " % {
/x
#l 4 ? " @ [ V N F _ _ _ P P T 9 ( k 3-Classes 8
( " d " % {
0x
#l Đ ? " @ V N F _ _ _ P P T 9 ( k 2-Classes 8
( " d " %
1x
#l ΐ ? " V N F _ _ _ P P T 9 ( u Splitting Criterion 8 ( " d " % B
2x
T 8c ? " ` B
3x
T 8c ? " ` B
4x
T 8c ? " B
5x
T 8c ? " ` ` B
6x
T 1 ? " ` B
7x
T 1 ? " B
8x
T 1 ? " @ @ B
9x
T 1 ? " [ [ B
:x
T 1 ? " Q ` Q B
;x
T 1 ? " B
<x
T 1 ? " B
=x
T 1 ? " B
>x
T 1 ? " ` B
?x
T 1 ? " ` B
@x
T 1 ? " X ` X B
Ax
T 1 ? " `
Bx
< Ԑ Bx ? p 10-fold Cross-Validation
d 3 L `
Cx 3 # ". " ` f
Dx
#l ? " [ ` F > 6 _ _ _ P P T 9 f 70.90% 6 ( " d % f
Ex
#l ? " \ [ F > 6 _ _ _ P P T 9 f 33.90% 6 ( " d % f
Fx
#l ? " [ \ F > 6 _ _ _ P P T 9 f 40.40% 6 ( " d % f
Gx
#l ? " @ [ F > 6 _ _ _ P P T 9 f 35.20% 6 ( " d % f
Hx
#l ? " [ @ F > 6 _ _ _ P P T 9 f 19.80% 6 ( " d % f
Ix
#l x ? " [ F > 6 _ _ _ P P T 9 f 18.90% 6 ( " d %
Jx
#l ? " [ V N F _ _ _ P P T 9 ( p Ordered Twoing 8 ( " d " % f
Kx
#l ? " ` [ F > 6 _ _ _ P P T 9 f 68.70% 6 ( " d % f
Lx
#l * ? " \ [ F > 6 _ _ _ P P T 9 f 47.10% 6 ( " d % f
Mx
#l D< ? " \ [ F > 6 _ _ _ P P T 9 f 40.10% 6 ( " d % f
Nx
#l P? ? " @ [ F > 6 _ _ _ P P T 9 f 38.30% 6 ( " d % f
Ox
#l dP ? " @ [ F > 6 _ _ _ P P T 9 f 18.50% 6 ( " d % f
Px
#l Z ? " [ F > 6 _ _ _ P P T 9 f 17.20% 6 ( " d % x
Qx
#l Pd ? " [ V N F _ _ _ P P T 9 ( h Twoing 8 ( " d " % f
Rx
#l G ? " ` F > 6 _ _ _ P P T 9 f 69.60% 6 ( " d % f
Sx
#l x ? " \ F > 6 _ _ _ P P T 9 f 48.00% 6 ( " d % f
Tx
#l ? " \ F > 6 _ _ _ P P T 9 f 41.40% 6 ( " d % f
Ux
#l ? " @ F > 6 _ _ _ P P T 9 f 35.20% 6 ( " d % f
Vx
#l P ? " @ F > 6 _ _ _ P P T 9 f 18.90% 6 ( " d % f
Wx
#l l ? " F > 6 _ _ _ P P T 9 f 17.20% 6 ( " d % y
Xx
#l 4 ? " V N F _ _ _ P P T 9 ( i Entropy 8 ( " d " % f
Yx
#l | ? " * ` F > 6 _ _ _ P P T 9 f 66.90% 6 ( " d % f
Zx
#l ? " \ * F > 6 _ _ _ P P T 9 f 46.70% 6 ( " d % f
[x
#l @ ? " * \ F > 6 _ _ _ P P T 9 f 41.00% 6 ( " d % f
\x
#l Pґ ? " @ * F > 6 _ _ _ P P T 9 f 36.60% 6 ( " d % f
]x
#l ۑ ? " * @ F > 6 _ _ _ P P T 9 f 18.50% 6 ( " d % f
^x
#l ? " * F > 6 _ _ _ P P T 9 f 17.20% 6 ( " d %
_x
#l X ? " * V N F _ _ _ P P T 9 ( p Symmetric Gini 8 ( " d " % f
`x
#l ? " o ` * F > 6 _ _ _ P P T 9 f 66.90% 6 ( " d % f
ax
#l ? " \ o * F > 6 _ _ _ P P T 9 f 46.70% 6 ( " d % f
bx
#l ? " o \ * F > 6 _ _ _ P P T 9 f 41.00% 6 ( " d % f
cx
#l $ ? " @ o * F > 6 _ _ _ P P T 9 f 36.60% 6 ( " d % f
dx
#l # ? " o @ * F > 6 _ _ _ P P T 9 f 18.50% 6 ( " d % f
ex
#l , ? " o * F > 6 _ _ _ P P T 9 f 17.20% 6 ( " d % v
fx
#l x/ ? " o * V N F _ _ _ P P T 9 ( f Gini 8 ( " d " % g
gx
#l \A ? "
` o F > 6 _ _ _ P P T 9 g Testing 6 ( " d % h
hx
#l K ? " \
o F > 6 _ _ _ P P T 9 h Training 6 ( " d % g
ix
#l U ? "
\ o F > 6 _ _ _ P P T 9 g Testing 6 ( " d % h
jx
#l |X ? " @
o F > 6 _ _ _ P P T 9 h Training 6 ( " d % g
kx
#l W ? "
@ o F > 6 _ _ _ P P T 9 g Testing 6 ( " d % h
lx
#l dt ? "
o F > 6 _ _ _ P P T 9 h Training 6 ( " d % s
mx
#l n ? "
o V N F _ _ _ P P T 9 ( c 8 ( " d " % {
nx
#l | ? " \ `
V N F _ _ _ P P T 9 ( k 9-Classes 8
( " d " % {
ox
#l ? " @ \
V N F _ _ _ P P T 9 ( k 3-Classes 8
( " d " % {
px
#l ? " @
V N F _ _ _ P P T 9 ( k 2-Classes 8
( " d " %
qx
#l ? "
V N F _ _ _ P P T 9 ( u Splitting Criterion 8 ( " d " % B
rx
T 8c ? " ` B
sx
T 8c ? " ` B
tx
T 8c ? " B
ux
T 8c ? " ` ` B
vx
T 1 ? "
`
B
wx
T 1 ? " B
xx
T 1 ? " @ @ B
yx
T 1 ? " \ \ B
zx
T 1 ? " o ` o B
{x
T 1 ? "
B
|x
T 1 ? "
B
}x
T 1 ? "
B
~x
T 1 ? " * ` * B
x
T 1 ? " ` B
x
T 1 ? " ` B
x
T 1 ? " [ ` [
x
< x ? @@ | Jackknife Validation 0
d 3 d 3 H
x 0 h ? ___ f3 ̙ ;/ f 9 _ _ _ P P T 1 0 i . Y[ + D= ' = @B + "R K0 !Q Q H N| P (
| ~
| s * 4v `} ' @ `
M| # ". " @` {
|
f d ? " ` F > 6 _ _ _ P P T 9 ||| @ " d f f % v
|
f (M ? " \ ` F > 6 _ _ _ P P T 9 | 9.21 : ( " d b b % y
|
f ? " @ \ ` F > 6 _ _ _ P P T 9 DISCUSS : ( " d b b %
|
f ? " F > 6 _ _ _ P P T 9
|||||||||| @ " d
f f % w
|
f ? " \ F > 6 _ _ _ P P T 9 } 24.47 : ( " d b b % y
|
f ? " @ \ F > 6 _ _ _ P P T 9 TOTTIME : ( " d b b %
|
f 0 ? "
F > 6 _ _ _ P P T 9
|||||||||| @ " d
f f % w
|
f ! ? " \
F > 6 _ _ _ P P T 9 } 24.60 : ( " d b b % z
|
f (, ? " @
\ F > 6 _ _ _ P P T 9 SLVDTIME : ( " d b b %
|
f H& ? "
F > 6 _ _ _ P P T 9 ||||||||||| @ " d f f % w
|
f
? " \
F > 6 _ _ _ P P T 9 } 27.70 : ( " d b b % z
|
f I ? " @ \
F > 6 _ _ _ P P T 9 FIRSTCRR : ( " d b b %
|
f D ? " F > 6 _ _ _ P P T 9 |||||||||||||||||||||||| @ " d f f % w
|
f ] ? " \ F > 6 _ _ _ P P T 9 } 58.61 : ( " d b b % w
|
f h ? " @ \ F > 6 _ _ _ P P T 9 } TRIES : ( " d b b %
|
f j ? " @ F > 6 _ _ _ P P T 9 * |||||||||||||||||||||||||||||||||||||||||| @ + " d * f f % + x
|
f | ? " \ @ F > 6 _ _ _ P P T 9 ~ 100.00 : ( " d b b % y
|
f D ? " @ @ \ F > 6 _ _ _ P P T 9 TOTCORR : ( " d b b % m
|
` ? " @ F > 6 _ _ _ P P T 9 y : ( " d b b ) `
|
` ? " \ @ F > 6 _ _ _ P P T 9 l Score 4 ( " d B B M u
|
` , ? " @ \ @ F > 6 _ _ _ P P T 9 Variable :
( " d b b
B
|
T ? " @ B
|
T ? " @ ` ` B
|
T ? " @ @ ` B
|
T ? " ` B
|
T ? " @ @ @ B
|
T ? " \ \ ` B
|
T ? " ` B
|
T ? " @ B
!|
T ? " @ B
"|
T ? " @
B
#|
T ? " @ B
$|
T ? " @ `&
q
N| # ". "
q J
&|
f ? " "
q F > 6 _ _ _ P P T 9 P & " d M p
'|
f н ? " ' " q F > 6 _ _ _ P P T 9 v 0.00 8 ( " d " # % @@`` s
(|
f ǔ ? " ' q F > 6 _ _ _ P P T 9 y DISCUSS 8 ( " d " # % @@`` J
)|
f \ ? " "
F > 6 _ _ _ P P T 9 P & " d M p
*|
f ڔ ? " ' " F > 6 _ _ _ P P T 9 v 0.83 8 ( " d " # % @@`` t
+|
f ? " ' F > 6 _ _ _ P P T 9 z SLVDTIME 8 ( " d " # % @@`` J
,|
f t ? " "
F > 6 _ _ _ P P T 9 P & " d M p
-|
f ? " '
" F > 6 _ _ _ P P T 9 v 0.91 8 ( " d " # % @@`` s
.|
f ? "
' F > 6 _ _ _ P P T 9 y TOTTIME 8 ( " d " # % @@`` s
/|
f ? " " +
F > 6 _ _ _ P P T 9 y | > " d & ' @@`` p
0|
f < ? " ' +
"
F > 6 _ _ _ P P T 9 v 4.58 8 ( " d " # % @@`` t
1|
f ? " +
'
F > 6 _ _ _ P P T 9 z FIRSTCRR 8 ( " d " # % @@``
2|
f 0" ? " " `
+
F > 6 _ _ _ P P T 9 ||||||||||||||||||||||| > " d & ' @@`` q
3|
f 3 ? " ' ` " +
F > 6 _ _ _ P P T 9 w 56.32 8 ( " d " # % @@`` q
4|
f L= ? " ` ' +
F > 6 _ _ _ P P T 9 w TRIES 8 ( " d " # % @@``
5|
f @ ? " " @
` F > 6 _ _ _ P P T 9 * |||||||||||||||||||||||||||||||||||||||||| > + " d * & ' @@`` r
6|
f > ? " ' @ " ` F > 6 _ _ _ P P T 9 x 100.00 8 ( " d " # % @@`` s
7|
f $\ ? " @ ' ` F > 6 _ _ _ P P T 9 y TOTCORR 8 ( " d " # % @@`` @
8|
` d ? " "
@ F > 6 _ _ _ P P T 9 L " " d M \
9|
` e ? " ' " @ F > 6 _ _ _ P P T 9 h Score 0 ( " d M }
:|
` $r ? " ' @ F > 6 _ _ _ P P T 9 Variable F
( " d " " # @@`` B
;|
T ? "
B
<|
T ? " q
q B
=|
T ? " q B
>|
T ? "
q B
?|
T ? " @
@ B
@|
T ? " ' ' q B
A|
T ? " " " q B
B|
T ? " `
` B
C|
T ? " +
+
B
D|
T ? "
B
E|
T ? "
B
F|
T ? "
G|
< G| ? " ` V
6 y 2-Classes Gini Criterion ( * `
H|
< H| ? " ` P00 | 3-Classes Entropy Criterion ( * ` H
| 0 h ? ___ f3 ̙ ;/ f 9 _ _ _ P P T 1 0 i . Yֺ + D= ' = @B + O v n 0 (
~
s * `} x
c $ ` ` "
s * " ` @P
` "
s * " `
@ H
0 h ? ___ f3 ̙ ;/ f 9 y _ _ _ P P T 1 0 Y + D= ' = @B + @ (
~
s * < `}
Z ? " dVd <
3 A ? H
0 h ? ___ f3 ̙ ;/ f 9 y _ _ _ P P T 1 0 Y + D= ' = @B + a K0 ` ` P P P O` (
s * `} _ 0
# # "J > Z 0 u
#l Õ ? " / X 0 V N F _ _ _ P P T 9 ( e 49.0% 6 ( " d " % u
#l Ε ? " X / V N F _ _ _ P P T 9 ( e 29.1% 6 ( " d " % u
#l ȕ ? " X V N F _ _ _ P P T 9 ( e 13.2% 6 ( " d " % s
#l @ҕ ? " X V N F _ _ _ P P T 9 ( c CMC 6 ( " d " % L
#l ? " / 0 X F > 6 _ _ _ P P T 9 L " " d ' M L
#l ? " / X F > 6 _ _ _ P P T 9 L " " d ' M L
#l d ? " X F > 6 _ _ _ P P T 9 L " " d ' M L
#l ? " X F > 6 _ _ _ P P T 9 L " " d ' M q
#l ? " / H 0 V N F _ _ _ P P T 9 ( a - 6 ( " d " % u
#l ? " H / V N F _ _ _ P P T 9 ( e 49.1% 6 ( " d " % u
#l % ? " H V N F _ _ _ P P T 9 ( e 20.5% 6 ( " d " % s
#l / ? " H V N F _ _ _ P P T 9 ( c MLP 6 ( " d " % u
#l 9 ? " / 0 H V N F _ _ _ P P T 9 ( e 79.5% 6 ( " d " % u
#l C ? " / H V N F _ _ _ P P T 9 ( e 51.9% 6 ( " d " % u
#l M ? " H V N F _ _ _ P P T 9 ( e 25.0% 6 ( " d " % v
#l W ? " H V N F _ _ _ P P T 9 ( f Parzen 6 ( " d " % u
#l b ? " / 0 V N F _ _ _ P P T 9 ( e 72.5% 6 ( " d " % u
#l l ? " / V N F _ _ _ P P T 9 ( e 49.6% 6 ( " d " % u
#l v ? " V N F _ _ _ P P T 9 ( e 17.7% 6 ( " d " %
#l T ? " V N F _ _ _ P P T 9 ( } kNN 6 ( " d " % u
#l x ? " / _
0 V N F _ _ _ P P T 9 ( e 71.0% 6 ( " d " % u
#l L ? " _
/ V N F _ _ _ P P T 9 ( e 49.5% 6 ( " d " % u
#l ( ? " _
V N F _ _ _ P P T 9 ( e 23.2% 6 ( " d " % s
#l L ? " _
V N F _ _ _ P P T 9 ( c 1NN 6 ( " d " % u
#l Բ ? " / 0 _
V N F _ _ _ P P T 9 ( e 77.0% 6 ( " d " % u
#l ? " / _
V N F _ _ _ P P T 9 ( e 51.4% 6 ( " d " % u
#l \Ɨ ? " _
V N F _ _ _ P P T 9 ( e 23.6% 6 ( " d " % u
#l ϗ ? " _
V N F _ _ _ P P T 9 ( e Bayes 6 ( " d " %
#l Tڗ ? " V N F _ _ _ P P T 9 ( s Non-tree Classifier 6 ( " d " ! L
!
#l ? " / O 0 F > 6 _ _ _ P P T 9 L " " d ' M L
"
#l D ? " O / F > 6 _ _ _ P P T 9 L " " d ' M L
#
#l L ? " O F > 6 _ _ _ P P T 9 L " " d ' M L
$
#l ? " O F > 6 _ _ _ P P T 9 L " " d ' M u
%
#l ? " / 0 O V N F _ _ _ P P T 9 ( e 77.1% 6 ( " d " % u
&
#l ? " / O V N F _ _ _ P P T 9 ( e 45.1% 6 ( " d " % u
'
#l ? " O V N F _ _ _ P P T 9 ( e 19.0% 6 ( " d " % v
(
#l ) ? " O V N F _ _ _ P P T 9 ( f CRUISE 6 ( " d " % u
)
#l 1 ? " / 0 V N F _ _ _ P P T 9 ( e 80.0% 6 ( " d " % u
*
#l < ? " / V N F _ _ _ P P T 9 ( e 42.9% 6 ( " d " % u
+
#l 6 ? " V N F _ _ _ P P T 9 ( e 19.5% 6 ( " d " % u
,
#l O ? " V N F _ _ _ P P T 9 ( e QUEST 6 ( " d " % u
-
#l 4Z ? " / f 0 V N F _ _ _ P P T 9 ( e 66.9% 6 ( " d " % u
.
#l c ? " f / V N F _ _ _ P P T 9 ( e 40.1% 6 ( " d " % u
/
#l dn ? " f V N F _ _ _ P P T 9 ( e 18.5% 6 ( " d " % t
0
#l [ ? " f V N F _ _ _ P P T 9 ( d CART 6 ( " d " % u
1
#l ? " / 0 f V N F _ _ _ P P T 9 ( e 74.4% 6 ( " d " % u
2
#l 8 ? " / f V N F _ _ _ P P T 9 ( e 43.2% 6 ( " d " % u
3
#l ? " f V N F _ _ _ P P T 9 ( e 20.7% 6 ( " d " % t
4
#l 4y ? " f V N F _ _ _ P P T 9 ( d C5.0 6 ( " d " %
5
#l T ? " V N F _ _ _ P P T 9 ( o Tree Classifier 6 ( " d " ! y
6
#l 裘 ? " / 0 V N F _ _ _ P P T 9 ( i 9-Classes 6
( " d " % y
7
#l ? " / V N F _ _ _ P P T 9 ( i 3-Classes 6
( " d " % y
8
#l pȘ ? " V N F _ _ _ P P T 9 ( i 2-Classes 6
( " d " % z
9
#l T˘ ? " V N F _ _ _ P P T 9 ( j
Classifier 6 ( " d
" % z
:
#l ܘ ? " 0 V N F _ _ _ P P T 9 ( j
Error Rate 6 ( " d
" % L
;
#l ? " F > 6 _ _ _ P P T 9 L " " d ' M B
<
T 8c ? " 0 B
=
T 8c ? " 0 B
>
T 8c ? " B
?
T 8c ? " 0 0 B
@
T 1 ? " 0 B
A
T 1 ? " B
B
T 1 ? " 0 B
C
T 1 ? " B
D
T 1 ? " / / B
E
T 1 ? " 0 B
F
T 1 ? " B
G
T 1 ? " f 0 f B
H
T 1 ? " 0 B
I
T 1 ? " 0 B
J
T 1 ? " O 0 O B
K
T 1 ? " _
0 _
B
L
T 1 ? " 0 B
M
T 1 ? " 0 B
N
T 1 ? " H 0 H B
O
T 1 ? " 0 B
P
T 1 ? " X 0 X H
0 h ? ___ f3 ̙ ;/ f 9 _ _ _ P P T 1 0 i . Z`x + D= ' = @B + K0 ` N (
~
s * T͘ `}
s * | ` `
8 @ H
0 h ? ka y _ _ _ P P T 1 0 Y + D= ' = @B + 0 p 0 (
x
c $ 0 ` x
c $ ` H
0 h ? ___ f3 ̙ ;/ f 9 8 0 _ _ _ P P T 1 0 . 0[X } K0 | t (
~
s * ` ~
s * ` ` "
s * " ` p ` "
s * " ` H
0 h ? ___ f3 ̙ ;/ f 9 _ _ _ P P T 1 0 i . Z` + D= ' = @B + t (
~
s * `} ~
s * \ ` ` "
s * " ` 8.0 ` "
s * " ` 20 ` "
s * " ` p80p H
0 h ? ___ f3 ̙ ;/ f 9 _ _ _ P P T 1 0 i . Zζ + D= ' = @B + t t (
~
s * * `} ~
s * 0+ ` ` "
s * " ` ` p ` "
s * " ` ` p ` "
s * " `
H
0 h ? ___ f3 ̙ ;/ f 9 8 0 _ _ _ P P T 1 0 . ZH (
0 @ 4 (
d
c $
.
s * .
@ .
H
0 h ? ̙ 33 xYmlTU~ۙ2TXiNq~Th:wlttf0C~,$ .[#11~&0#n$n}ϙaZⷼ7Ϝss}{yw"g2S*U\5=!&2d.ӹA=*< @5PjuɟΗ凓[('Cq)z\P6PyO6|^)hJ=-7ע{~o롟m nݗWzܦN\[ EDW9sh.0\, Fj@#X4-hځn ˀ@7p#X {Q){uzmD ܤߢjd135K>{P*N&21g ڝq̲5D'Im)my`zmB<)Z&ff41o}P1ߋ fƖ--iv`ΞA<Se:8Տj yeR?Hj/7ZfMMM+w-οjnx-(JwLQLm;Z*κk{'YZuQIhLG3+.TRfE2Ub}R5ʾO,(͗?y%1ttݚ6ZlTt!>v:gS6R$ѳz{o, y#;=ޜ!OCސ70$J
|k_]`Dl˶aep<| =2T}bN>>P/譐?[a]ƴ(8dg- $,I8;[{[K '[Y3j=L'3B :sܰE\=͞'#
ZޚXt,:e ݣ}G7.*$N:wϤgB4~lw$:z~\:ڝ#*qܒW( K;Mu^pLWGᢽ@Na87{7(|Kqa2J5N!唕?>!o?-3B~1>o!EMؙ/z7;O'qiqeFr 5|<#0}Рېbc\6iON@17#̐b?Bl3f /ki%".(HW+ܾ".$$N\9ו>$k:Qڒz%bŏJvԕyf#f_Yf-|8j+fsĞrU|La4##$qO=ute͇`-s>(rVRĀE(=xeTJ**օD_UDUv
ìDUDGgҴʬW]_~#T˜^m*/Et(MM.nrA~&YCa꭛qɴdĺ
ܶlZ2#a({l/*Kq) RΎ,Oq?z(ǹ#>_4^%~{8mH'Tdo>vUgsǹqvRNR6n?t3qPk']<(!tʬy3SB|dh|kgyA:h:Y}~?m:)nw=Zq瑚jK,ư%zTםhTF]LKrk4=@f>V xYkl\>z]'$5Ľخ8
q/H81@S.6qTR?P Aԇx_n%BJ[TRVCTj$wxR;w3gΜ3gWL;Z)]wR:JH:^pJH#&&v G1.ĸ.+*t+-"-ͮ`p,ƭ5_V?_џ!|BO9L%bd^}6ʷ\7CE>zmgh}E}tyN\vV7wN{? Z/9PL~kj~\Uևfh|28U1uGG2<F{_ژ|6m|Bn<t0B\'sv؏IͦHHT#5Wym6b⫤:O`#僦JsgўʗΟϕJ;~ߵKsg]/tFQ[^F,P&U+op[gsx'v| }t3wQ/h|za?7Oyxj:{ ϺV({]dfn>Z5>t
´5
AKmGgK5զ%a|v%Zd?jnôX|~&ITi*AtC˿yf2XrClKߡ U> ɁBu}A=P9=gLeqn!n`njwZ-@C3@4NGOɃS@T<x)TA@ hO.ǃGZr[O՟"i{ZS~=Ϙj:ZXL͒j'We=(#$:aa2-ɽ#Uݵwlt؞xE$¼AзdqpBRAr KER=Up´Sg~6\\w ^(,8؇/(h^zpcb"L A&/8:=&R;xҧ|+}n@I{nNcJ^[SMO> &HMLDOr@9k˥ǥ=Eכ|cp#iKnjvCX)Z7*.R̋j
^ mӘQ]8tS%J-t2-#2ai'3)-Ԕ5S>:݂`C29Ebr.o`rq|XB}XR{|XFWFOv{Vm3]*kΰQȺԨP?/E1郫ьMZf7r!~W=e|bpab`|<C8,Q"?)}" ҦUhYt-5U.peii1/i]ȱճ,mhCdEߟY Y f W3pg&DDzGEdB{Yw"2 2EF!2TklՓI_O&d2@T5L%L%lkSɨC6^TTd=*ӃȱU71
BXk+tfhɯǓmʡm}^Ӳ'kGk׆í-;Ru**Sʞ*˥xMkiX<[^H7ڨ|.#tN˿EEgJ^\;܆|翬ʿfi=cпg\O7~n3Fip<f'iD>CBObUR_!OsN$u:!Cy\-BS"]gPڗRć8u,l|6>wS\̫9)z# xWMHTQ>>hΌZ:N#R
H(5rj5q"U"ZDQmڴ6&MТEbE59wbtӟg<ss_,\[$rpdN_Eߐ0Ȕ\u '>a|sʰb,]4s.xwم՞;1yLC\T2q
''W̓0
9U g4Nڧq5Xw)8}ACЩٌ[7APy#O)1 yrW x cZ
T @DBFިVPswqgRFHU;LaKT
{9$J2dnNH]D+QXmcjϥ^>_O%+J}z>.+@wl۩W>^]=
:QP_
{eȲM2Uu3Ib^#x\
[xQ4ܸoXJ_
I[46h\_ˏȟ?
oIa_cWЯ2g6}י|k%8qK?z*,29o8|hb|I쬿/U݈뜇O^ѵWW,tbx;pw0g쨟NDńCpIWmf<xLЉFmgb#/>تonl嗲A-]ߓ"if%MBfM3w< M> 3m@x|Mg[:GSKz`_X O BzH|6}Ԉ}YH -f[vx sWl4oe eW֒驳sslr<_E/u; xW=LQ7pwpBP h@I8^
xlBĎ
;cgaJc6$VmwI*e7y{oߴn=܁ʕ04jcL8 *\T*p&.+6i~A#0M9a yV'b<_kR}Id_0F\IkN,Bz>AkSOTS9N@S{SpaV>O0EQNU;jx["n"_cq8FL
Vqr)z>rk e$j)9Qa<&ŪuTIFyeWZ=I".1$B::Xķby-+Dct3+qG6Xns7G:Nۢ|Tܧ݆6&C\Jwݲ\>&B|4_ڙ\.LLAlk1E,zO&:c(פpܭpͷǪ"0Nj>n]b.7t{2i_W~(<_8<Zq>V&ݾC^SqەTܨaߛEq%^:ӓP5lJlKscטup?]|]jNVU,X\0@#4¥EH,/6x|sXZr%-T~E$W$.n)g;0Ygv.WޒW/NP23CQPae[lϵs+Y /r xWkSAM%HZk)
I)ւ=T4K#b>DJţK
?@=(Ճz8/}m=&;5y/E<݀ Z6aD MZ!~Ty$)B!G-pvߢ"Ƶ ߢj_c"ǣL1y]D21 C@99O>76irtISkW#n97^{97 L!i%i#i
y B6F
lÍaW8UrEi##-okɄN\qCs='Y G+RG,tqnڹasVD=̺݅/uV#͝>}YOڥd>Ak[DB:e}ƍwz G_>KOE>a''\A:fc#O(~{cIh?n}QEl/;d3P:C
An`w_>&1P_]QgDzR YĖT.lkso u )IGrϝa`/<@;Txn@r
E;ү;'aw$&/loaZ{*K#Ex$8ɬN%*~la xWKLAZZJ$1`LHLD/
&M(-
M<OjU! ^)1!=3PI$i3l6t:Hg<fI t&ԙ=UN9]:{S$3h lI1Z\J2Np+aPt[5@t[>*dO(ANUk P<>k+\K'8$(Z)T";usx=gPL#@>$:r >jĵW[%ϡj6wp Te8kX#l-hRr#'(oșV4Z=u'CJ늳|X
pp(ٟ9M?:TJu!szиZ{F{eksYEeQz#=;q vѡH{t4ґ&sXjҾts\%R_rL˫PWysKx\(Y3;Ç9i<>$qevy҈<98MGxe&n<W,2^Ĭy8+'vģ}_1ù|Wӭ? $KW˸5f,7k?s[y(G#Ksɇ_#|xk⌼7)K\1^g+FwB+B*^=/CxD3%\o9Z"G;HeLζMDֿhٖP1AN۴zyG^е+~*:SCѸ5!mT鿘A83?=
Aѹ]}~' xp^RЀ3ÿlHbPLPÄ!?(f(9 !K\tC%zQ1<<`:? vCV۰BM!Ff ہ V30d'2B!Vf y*C1$Ae OR Z222$C>yxʈ
2ĚP?h@*١rjDXHcwl:<Xaa Nq#H3˂R'E #0KQ*Wô1QRcg9 Yj4sC0&dT S L . A 27)?(\! ?]FH1b`6I-̌̌\L-WAaU q C Ĥ\Y\ cTw0|9yB29oBvx'Q0 x=tUՕ%y$$Eh@O<!H }ZZN;vTg)"e
viG1 k3,t*9、s}|g{6_پg{S0K+aLJ <Wz,L©1OsX@H~Q|G|9e<h2zkD<)BU){╂ƿ v\F̿5<άW $lD4G_!zfga/<s5I'c>35m*icj3Zugb Q?m BB|1_yvTOyY}y`nLӚO >@c s! EcZ$ `y:z2#O4?~)#/C$br鵴4!R*YOH]'o^][x؊ƾ]],ekb{¥uK >n~j30&ٌ۔
Y)B,ėm/Bi"=T:p\@GS1֑룏M Θ_*o|N\^%u/axFw}_X{"yCbSdˈnrC#UKss
[kGe?%w/q_i{~I"*_bX SN6~bM|2>Pii5lKN9ZTjYynjr7Û!"7d#ta6{d#km3.L rށS<7G1_aq}ni>!lŏ2b;{M݇rK^,ƒZ6,w*Rm_wxW`/͐/9|1Z>\ֺ!2~2K̥eX >;y>;sMߞBOMvj_z0Ci^S[a SZ=p-w#4?Q#@zq7iW:;VՓ'LTjzӴ˧OND2R~Ygگ[+Uy4*[;՚BZZ+:wh >#qO5@um5B:$O'T3)#[3D۬i&Ab.LL5442AC%]}-[=;vzY.y.,-i^n]ɨ\WG \6V'>^ a'cئ'bGG}l*/x^0QQHpSxȁ~~ā~w|W;|-p1j8pqX/Zikߎpüc3/33ORq(qPW4:avvp=azY<g@?K,݆6ʢ k41d]8
^O*^t3oj`dII5Kf\LLp@ `XݭPZ@|PڶD__Wn6Wtu&7%zoLwn.kS=Om)4uw%U$F\
d7K&XZ Q#PlA]7t 5tt4K6k%xokoCdbMO6v]oXjcrГk/[ىrT[n~8=a7 o;yD#dL^)j+!E0p+W1|%CU{/{;Ud'm T<StޏkiwMVM#J( fA+R:מ
\%&raf82*\5] &J)ϰkyתF ǰZ=0B6,b˷0B6SS\0+bXVf+U01>|^G概ěf)0G}0m>v0φX<-hcxo>|o~8}8vyx&VуrGM%ht7u8. ^ ʐG*X9u_>qRg*<d+ȼWyu\]#q!^՟5G.!īOϏJ+h+ļBWyO$q!^·%xtTBƿ'=ƼB+,yK<C
3;ng!![|J4rG|¶|"'"DOu>9tͼ_B)+|D,|"|O|^㵡#B|._ߴCB[GWVcoˋlDph9W2koS\@0 ,n$`_txn{WA/l ޤ(O"d
x5d7yDo!n-g*Hݤ"PTZXuZXԬZX-$3U3U3U3UM߈j S4555jETKCLլCLլCLլCLU2iKS4kKS4kKS4kKb9S))))jzATi14Z5X5Z55@Yfj`C_2rՉ=Qy+iy
wBjz\//]YmHq";yGrFS-,(xƻgL ݇VmhPXĶ~nvmZ,naۂtXEl`6k[ҏ(0IYG9M%j4K:gJXbMnu%knu%sjse4nyh0ý~wg@WJ>\x%7.ci[*O_]Jx{c|eq+j.0Q=YXw+Ys굋'ohNE.Q#KTت@<aIƅ[XZxӑw⚣kmg
Cs}})j>S5XLiK\ski3ߝ'[[)huj_%JkvWU{okƝ5mOl5<W1ett`s?/օ)&:o~ 9Ruʥyy/<WR%P|z?ľwJ-4*wB+̀n-2ɀnd@7w2D̅P/PZ,ϰ*YjRj:,h6d[KQMWhGL|kCd·#py,8[7*z9%[3*A-G$iF wVw:)Ȩui͢F7Ëxe7=HeZ5ar]R/`a
VB@*1WM~ǥh{Hm3f{ڗoUxbkKK<<΄z,3En
Z}~ݬUZqhJ(4F
6+yu[DŽ-XqY7?tC3V\,3/?I|mC?A{f@䱭D3F+E1|elK"<lJZ=l$nzU3R7/9.0s1s^(ik};XLݳK1-Fk)W??S[7o7ۍvo7ۍvo7;܍vmnn(rrnn}
nFo7ۍvo7ۍ7ۍvOf;Lw |qT+gI>W'%c>O_x0EE\߫SUT-KoSц7נ},ndWةxKWGxعD8'ShQ+ZM.5?PcLUvaAjϿa,a3B2#e;(wIe֕%I^iF0Su(u*DyF2Č>a
g$
?3PXWFU~z*C3AYsgLNY#ϗW*^Ɵ7O΄:j8zyXtrh3D¨(at6ӌ44|F<1;~~3`?3_m@9JD"p1ޣOy2v]11%^q&lA:s1*=|֯8x0rn!sr ƸnM9͛sW3>+sr"fe+ҹ9g]B|;2Yٰ^De;@ǹ=AٞBKe)73{ΎgQnkoC+iX369D:S_Gf7jȻ(gu5FBl#l/N+u$3Q48D܆%.kh.3$vAxwAF8y-'3)}N>ϓCW2R#DJ_ؒ'1 WТ͈+8KkuNbyL>S%ʼVjZS9_ӨitEYpᾨ㾘4EmQ2j:YpTdk0 {T'PLIUgy긃Ydm0w6eyyhRRjW\Uo`q~ÄR۬yuJwL-=E"mZHo_/ T+oOK`mNY"U"ht3 Рw쪺u˄B5SuFU2}\1֏lӜlnʀK+X*nҲ,--^uYppO].ς<w!4-:,[p[nM}H}(Ci{uܽYpqf=;f;;eT0=&kY7i'??>)SʼqN
{?b??ON?:/?ϟq{?{?{?ϩT@GzrOcأk:=s8K; 7D"^8iG$-/@k]ȩiR.gJZ-4RG#3 H xXMhSAݗKMjg)*'*B1mC+lZm!'A)<*RBPs
oędc+j5_vٟIeܝP]@.6mpXm|>OM
J(^D(L' :S.~
~ 8/ODRQk<Z?O2pjڱG̉+08+w*fr4XunAc0Ƨt3ʁv+wg,&;WҮ?U(&\@GSRfVNXgMYx.pxPjQ(>0BRfLFklX~ B_4h;_h8meX?i-Z6ijtҟV#*ooM Gt#A9iF-E53Pq¨mc!-<\z"fkA[(:OqdぃɓCӘ"@gr
Ф'bz8ң ]LmF 3̘ޮfH#umOu6e}x}=xenYZt1E2SomYY2,^f74B4m|J5y'4BX{57ydjl%TIlVfW_L'NLCxOwub^gjd -N#*Gh'axx~P~Ոx#lXF0[X.ƈoYL)VFxw**V𗎍~g'/ < xKLSApv_)BF0xx1>hCp<H<x111=7IufwK)E_ b:twvggfO@ ryT1Dn ZyZSm#*k0& }d[!5L!S(WN^ֿ"+Ov~Ys>0chG(DT9sw4п_!WQHA9<NpYwjz(4 7XtT.Vk=@9E!"!A|B@ܧ03`!7
ntfvSígLGbԚiʘ*?4E,T&3x|pvtp*6U8tNZxC`8h:<h&F:>ξM#dNwxe,:_Gtkƣ^JZWtq´c5M'Ep~{31ږo%]2=!2[ IPB7#P,0|tX);81I\4>cؤm=j$-dIOʧ/9O6&_7_J.ڿ.n?m:g<hiΌV0f#8F4Xl7hzNj+ubZ>lݘ1c"淺_,E7< !0Λ2hĩ&#mbkP"=3,߂^/xÀHK>
~A xX_HQ?MݷӬh}PR3zhBO-4q{&AkЃA=DQ0J@ЃCKCn7|AqwΟ{=oomytd(c\ 6f4$%Vl'Ji tA/k3o囌yVXMF?Zi)Νxq c?U.Ǻ<\0Zq#K`?7R7 N%KIY5Zk{p#0
ԟuh.fwi7I. mOȳZ7]zP8]ȕUnPE!Wk9]T ܔCryw){.I sʖ!UJz3GjkcNcD2f+1ٓ}LBfqع%5TFz8MFEFH";l.9~ _39ݦ̰~)YE<?O;r<; 2@v}0]2դm^V:IL[]Ax'\lnYϰ>csb23T-~q/;;<ڽ噵aPKzϗK,WraCUuk-{Hפ$.p
j|ܤوgQ=/BMY-Z<{DQ-NPM &BA*W82HB4'Ix+7JWObFޗN/mfESRAOGjmecj/\n.s.w
Sh?D%X8<!/! i xXKA3w~ =)!PСM᪵ڲ)I
<tK<DX]Cy 1{3]v-If{3o{3͗|SIHB;D]Ɛ%8t[$R@f)Adk1|&Nu'ߢ gΘM=HNc/_bMuw%(>2[y%s";/N01Që)G<s0bSj/G*<qC
VtSLZwmM.R뛎.}QZ(HHHHE ?ɃTsz
+9{XwI} .'KhBrYns)cAYIk=E21 qg&DZHoɜq71e_Jyt]uPC鮋D;ݩNEj8jڀ6ϭF7u^`'?hz!g,00
C5HF+\έXaKm[1)7}_|f]ʏ;4neWhb({&-'1&i'z9mKn|}.Y$?'?cFQk7Gyd)lPlڍ meݏEƒx`K(W$c'c0}+txf&O7kQHeVɶ]A.a|SG#I/TmAn/nZ#̋-\V'y]o88Q0/sOWT@jxOx+ ,/LP-#|bHJPܾ\[+Oܰ xYilTU>uf S(,ôPPiQ(aU$T@glL![ `$Q%1&
nQ#ZchM4QHwλ}3] =s}]]r_t?5gJ(zaX^DNq_pϝ1ZMa:C˨JvCx{I^4\7f7s96x3Btu/}jƳǔNiTO{)tm_%K̿8Ö?9:܇T!_ټnHp 1[xV,`NǻP`n6Lte EiR|uʒ5F=+BbtPC5CkyBVCP<S3LjӍȷ:Qkiٿr}82}x@GDSB}`x*.K\.Wg+CUjlsshx> nCSs[dH=q[]^\8wXd#W\};24n"3N*Pz҉}J(]P/S'X֬]|=3C"@Bklu_v6eMApd[>S֯{k_ov}W~r_2mm)Z7\ǓIVn=uȮ@g}9nM]H8uxlP8j*[!whjZj@3wϥ`3N:Ӊ81jg!M?br"ճbv²W.Q+ߨWth^<S[JTCgYC⠥)3X[TQT4kSiˆBTr?:ش1WWrVb?xZ%XZorTչ/XJxgzԿ M+K]b>̱%ʓD|}]A$ kܯx!tD0U骰1}<=L=ZA vvf
y䟸f5{䰑kP%//7?PSc8GܝC6Wt &Ɨe aAXZ91<K'<sc~ߥMإB.#lH5#{mwF3D[4f|Ik H)W <юM(lE6T0it1fq'ĐQP5tD1pnKoeKGDcr(9N{>Ih:C7N6"5ji%,aIr])JQ:".>Z
ne@d52w7]r:`YO֢ĠEuj#OG.`n9fjcsV!W!XA/ :28g9q
%ȩ![\I%"GR?Kzeܣ=e;W$%?II%uKd.y2tg_Œ_ \Nc$䗪RyH%84L@;r%W )wzK'|&8t 7z'
1|U]
R )9@4Y^M>>O\ay_<A)wޗoqege%[D )SX=^S&کpM4mYޫ%ARZ)ᾲ.{YJ4_#t?h r .m t || E f M t Ĥ <{ @ F 5 @ Q \ * x Q { }[ 4^ l` c g Bk X % ?
" ; Oh +'0 h p
$ , 1 Data Mining for an Educational Web-based system Poi rje Edge Min rje 16 Microsoft PowerPoint duc@ ) @ D{8\@ *] \ G ^
g ' O - - @ ! - - ' ̙ - -
% B B - - ' ̙ - - % - - ' @ Arial - . f3" 2
Data Mining for an* 1 # # $ # ! # . "System - @ Arial - . f3 2
DG Educational Web ' # $ ! $ # ! 7 ! # . - @ Arial - . f3 2
D - . - @ Arial - . f3 2
D0 based system# ! ! # " ! 4 . - @ Times New Roman - . 2
Ph.D. Survey
. - @ Arial - . 2
Adviser: v
. - @ Arial - . 2
Dr. Bill Punch . - @ Times New Roman - . 2
; September 2002
. - @ Times New Roman - . 2
R Behrouz Minaei
. - @ Times New Roman - . O 2
0 Genetic Algorithm Research and Application Group
. - @ Times New Roman - . L 2
. Department of Computer Science and Engineering . - @ Times New Roman - . - 2
Michigan State University
. - ՜. +,0
On-screen Show msu p $ A
/ Arial Garamond Times New Roman
Wingdings Trebuchet MS Courier New 宋体 Gulim Edge Microsoft Excel Worksheet Microsoft Equation 3.0 1 Data Mining for an Educational Web-based system Topics Problem Overview
LON-CAPA Courses using LON-CAPA at MSU Current Status Resource Evaluation in Lon-CAPA Literature Review Classification Methods Data Set: PHY183 SS02 Class Labels (3-ways) & Distributed Data: Course / Students , Preprocessing and Extracting the Features Extracted Features Classifiers Bayesian Classifier k Nearest Neighbor Neural Network Classifier Parzen Window Classifier + Combination of Multiple Classifiers (CMC) Results of Non-tree Classifiers Decision Tree-based Classifier " Splitting Using Impurity Function Gini vs. Twoing Tree Topologies $ Avoid overfitting: Cross Validation ' 10-fold Cross-Validation vs. Jackknife Variable Importance using CART ! A sample of C5.0 tree/ Rule set M CART tree for 3-Classes using Entropy criterion: (10-fold Cross-Validation) Final Results Summary/ Conclusion (1) Summary/ Conclusion (2) Next Steps (1) Next Steps (2) Next Steps (3) Fonts Used Design Template Embedded OLE Servers Slide Titles $ _ rje r j e
! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~
! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~
% R o o t E n t r y dO ) P i c t u r e s 6T C u r r e n t U s e r S u m m a r y I n f o r m a t i o n ( P o w e r P o i n t D o c u m e n t ( : D o c u m e n t S u m m a r y I n f o r m a t i o n 8
--minaeibi1032462140--